Evaluating and Differentiating a Polynomial Using a Pseudo-witness Set

被引:0
作者
Hauenstein, Jonathan D. [1 ]
Regan, Margaret H. [1 ]
机构
[1] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
来源
MATHEMATICAL SOFTWARE - ICMS 2020 | 2020年 / 12097卷
关键词
Numerical algebraic geometry; Pseudo-witness set; Implicit polynomial; Directional derivatives; Critical points; DECOMPOSITION;
D O I
10.1007/978-3-030-52200-1_6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Polynomials which arise via elimination can be difficult to compute explicitly. By using a pseudo-witness set, we develop an algorithm to explicitly compute the restriction of a polynomial to a given line. The resulting polynomial can then be used to evaluate the original polynomial and directional derivatives along the line at any point on the given line. Several examples are used to demonstrate this new algorithm including examples of computing the critical points of the discriminant locus for parameterized polynomial systems.
引用
收藏
页码:61 / 69
页数:9
相关论文
共 23 条
  • [11] Real monodromy action
    Hauenstein, Jonathan D.
    Regan, Margaret H.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 373
  • [12] Synthesis of three-revolute spatial chains for body guidance
    Hauenstein, Jonathan D.
    Wampler, Charles W.
    Pfurner, Martin
    [J]. MECHANISM AND MACHINE THEORY, 2017, 110 : 61 - 72
  • [13] Membership tests for images of algebraic sets by linear projections
    Hauenstein, Jonathan D.
    Sommese, Andrew J.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) : 6809 - 6818
  • [14] Witness sets of projections
    Hauenstein, Jonathan D.
    Sommese, Andrew J.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 3349 - 3354
  • [15] Irschara A, 2009, PROC CVPR IEEE, P2591, DOI 10.1109/CVPRW.2009.5206587
  • [16] Kuramoto Y., 1975, International Symposium on Mathematical Problems in Theoretical Physics, P420, DOI 10.1007/BFb0013365
  • [17] Lu Y, 2007, CONTEMP MATH, V448, P183
  • [18] Morgan A, 2009, CLASS APPL MATH, V57, P1, DOI 10.1137/1.9780898719031
  • [19] Photo tourism: Exploring photo collections in 3D
    Snavely, Noah
    Seitz, Steven M.
    Szeliski, Richard
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2006, 25 (03): : 835 - 846
  • [20] Sommese AJ, 2005, NUMERICAL SOLUTION OF SYSTEMS OF POLYNOMIALS: ARISING IN ENGINEERING AND SCIENCE, P1, DOI 10.1142/9789812567727