Evaluating and Differentiating a Polynomial Using a Pseudo-witness Set

被引:0
作者
Hauenstein, Jonathan D. [1 ]
Regan, Margaret H. [1 ]
机构
[1] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
来源
MATHEMATICAL SOFTWARE - ICMS 2020 | 2020年 / 12097卷
关键词
Numerical algebraic geometry; Pseudo-witness set; Implicit polynomial; Directional derivatives; Critical points; DECOMPOSITION;
D O I
10.1007/978-3-030-52200-1_6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Polynomials which arise via elimination can be difficult to compute explicitly. By using a pseudo-witness set, we develop an algorithm to explicitly compute the restriction of a polynomial to a given line. The resulting polynomial can then be used to evaluate the original polynomial and directional derivatives along the line at any point on the given line. Several examples are used to demonstrate this new algorithm including examples of computing the critical points of the discriminant locus for parameterized polynomial systems.
引用
收藏
页码:61 / 69
页数:9
相关论文
共 23 条
  • [1] One-dimensional slow invariant manifolds for spatially homogenous reactive systems
    Al-Khateeb, Ashraf N.
    Powers, Joseph M.
    Paolucci, Samuel
    Sommese, Andrew J.
    Diller, Jeffrey A.
    Hauenstein, Jonathan D.
    Mengers, Joshua D.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (02)
  • [2] [Anonymous], 2015, An introduction to computational algebraic geometry and commutative algebra, DOI [10.1007/978-3-319-16721-3, DOI 10.1007/978-3-319-16721-3]
  • [3] Bates DJ, 2013, SOFTW ENVIRON TOOLS
  • [4] Recovering Exact Results from Inexact Numerical Data in Algebraic Geometry
    Bates, Daniel J.
    Hauenstein, Jonathan D.
    McCoy, Timothy M.
    Peterson, Chris
    Sommese, Andrew J.
    [J]. EXPERIMENTAL MATHEMATICS, 2013, 22 (01) : 38 - 50
  • [5] Bates Daniel J, Bertini: Software for Numerical Algebraic Geometry
  • [6] Tensor decomposition and homotopy continuation
    Bernardi, Alessandra
    Daleo, Noah S.
    Hauenstein, Jonathan D.
    Mourrain, Bernard
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 55 : 78 - 105
  • [7] Cell decomposition of almost smooth real algebraic surfaces
    Besana, Gian Mario
    Di Rocco, Sandra
    Hauenstein, Jonathan D.
    Sommese, Andrew J.
    Wampler, Charles W.
    [J]. NUMERICAL ALGORITHMS, 2013, 63 (04) : 645 - 678
  • [8] A Numerical Method for Computing Border Curves of Bi-parametric Real Polynomial Systems and Applications
    Chen, Changbo
    Wu, Wenyuan
    [J]. COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2016, 2016, 9890 : 156 - 171
  • [9] Fischer G., 1976, LECT NOTES MATH, V538, DOI DOI 10.1007/BFB0080338
  • [10] Harris K, 2020, Arxiv, DOI arXiv:2002.04707