Double Poisson algebras

被引:124
作者
Van Den Bergh, Michel [1 ]
机构
[1] Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium
关键词
non-commutative geometry; poly-vector fields; Schouten bracket;
D O I
10.1090/S0002-9947-08-04518-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we develop Poisson geometry for non-commutative algebras. This generalizes the bi-symplectic geometry which was recently, and independently, introduced by Crawley-Boevey, Etingof and Ginzburg. Our (quasi-) Poisson brackets induce classical ( quasi-) Poisson brackets on representation spaces. As an application we show that the moduli spaces of representations associated to the deformed multiplicative preprojective algebras recently introduced by Crawley-Boevey and Shaw carry a natural Poisson structure.
引用
收藏
页码:5711 / 5769
页数:59
相关论文
共 17 条
  • [1] Quasi-Poisson manifolds
    Alekseev, A
    Kosmann-Schwarzbach, Y
    Meinrenken, E
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (01): : 3 - 29
  • [2] Alekseev A, 1998, J DIFFER GEOM, V48, P445
  • [3] THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES
    ATIYAH, MF
    BOTT, R
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505): : 523 - 615
  • [4] Necklace Lie algebras and noncommutative symplectic geometry
    Bocklandt, R
    Le Bruyn, L
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (01) : 141 - 167
  • [5] Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem
    Crawley-Boevey, W
    Shaw, P
    [J]. ADVANCES IN MATHEMATICS, 2006, 201 (01) : 180 - 208
  • [6] Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities
    Crawley-Boevey, W
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1999, 74 (04) : 548 - 574
  • [7] Noncommutative deformations of Kleinian singularities
    Crawley-Boevey, W
    Holland, MP
    [J]. DUKE MATHEMATICAL JOURNAL, 1998, 92 (03) : 605 - 635
  • [8] Noncommutative geometry and quiver algebras
    Crawley-Boevey, William
    Etingof, Pavel
    Ginzburg, Victor
    [J]. ADVANCES IN MATHEMATICS, 2007, 209 (01) : 274 - 336
  • [9] CRAWLEYBOEVEY W, MATHQA0506268
  • [10] ALGEBRA EXTENSIONS AND NONSINGULARITY
    CUNTZ, JC
    QUILLEN, D
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (02) : 251 - 289