SECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONS FOR CONTROL PROBLEMS WITH LINEARLY INDEPENDENT GRADIENTS OF CONTROL CONSTRAINTS

被引:14
作者
Osmolovskii, Nikolai P. [1 ,2 ,3 ]
机构
[1] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
[2] Politech Radomska, PL-26600 Radom, Poland
[3] Univ Nat Sci & Humanities Siedlce, PL-08110 Siedlce, Poland
关键词
Pontryagin's principle; critical cone; quadratic form; second order sufficient condition; quadratic growth; Hoffman's error bound; CONTROL-STATE CONSTRAINTS;
D O I
10.1051/cocv/2011101
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Second-order sufficient conditions of a bounded strong minimum are derived for optimal control problems of ordinary differential equations with initial-final state constraints of equality and inequality type and control constraints of inequality type. The conditions are stated in terms of quadratic forms associated with certain tuples of Lagrange multipliers. Under the assumption of linear independence of gradients of active control constraints they guarantee the bounded strong quadratic growth of the so-called "violation function". Together with corresponding necessary conditions they constitute a no-gap pair of conditions.
引用
收藏
页码:452 / 482
页数:31
相关论文
共 25 条
[1]  
[Anonymous], 1965, COMP MATH MATH PHYS+, DOI [10.1016/0041-5553(65)90148-5, DOI 10.1016/0041-5553(65)90148-5]
[2]  
Bonnans J.F., 2013, PERTURBATION ANAL OP
[3]  
Bonnans JF, 2010, J CONVEX ANAL, V17, P885
[4]   Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints [J].
Bonnans, J. Frederic ;
Hermant, Audrey .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02) :561-598
[5]  
Dmitruk A. V., 1986, IZV AKAD NAUK SSSR M, V50, P284
[6]  
Dmitruk A. V., 1987, IZV AKAD NAUK SSSR M, V51, P812
[7]   ON APPROXIMATE SOLUTIONS OF SYSTEMS OF LINEAR INEQUALITIES [J].
HOFFMAN, AJ .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (04) :263-265
[8]  
Levitin EvgeniiSolomonovich., 1978, Russian Math. Surveys, V33, P97, DOI [10.1070/RM1978v033n06ABEH003885, DOI 10.1070/RM1978V033N06ABEH003885]
[9]   STABILITY AND SENSITIVITY OF SOLUTIONS TO NONLINEAR OPTIMAL-CONTROL PROBLEMS [J].
MALANOWSKI, K .
APPLIED MATHEMATICS AND OPTIMIZATION, 1995, 32 (02) :111-141
[10]  
MALANOWSKI K, 2001, DISSERTATIONES MATH, V394, P1, DOI DOI 10.4064/DM394-0-1.MR1840645