Existence and approximation of solutions of second-order nonlinear four point boundary value problems

被引:14
作者
Khan, RA
Lopez, RR
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
[2] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
关键词
four point problem; quasilinearization; upper and lower solutions; quadratic convergence;
D O I
10.1016/j.na.2005.05.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study some four point boundary value problems. We use the method of upper and lower solutions to improve some previous existence results, and apply the generalized method of quasilinearization to obtain a monotone sequence of iterates converging uniformly and rapidly to a solution of the problem. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1094 / 1115
页数:22
相关论文
共 14 条
[1]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[2]  
Ahmad B., 2003, THE J, V16, P33, DOI DOI 10.1155/S1048953303000030
[3]  
Ahmad B, 2002, ELECTRON J DIFFER EQ
[4]  
[Anonymous], GENERALIZED QUASILIN
[5]  
Bellman RE., 1965, Quasilinearisation and Nonlinear Boundary Value Problem
[6]  
Bernfeld S., 1974, INTRO NONLINEAR BOUN
[7]   The quasilinearization method on an unbounded domain [J].
Eloe, PW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) :1481-1488
[8]  
Eloe PW, 2002, J KOREAN MATH SOC, V39, P319
[9]   A quadratic monotone iteration scheme for two-point boundary value problems for ordinary differential equations [J].
Eloe, PW ;
Zhang, YZ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (05) :443-453
[10]  
LAKSHMIKANTHAM V, 1995, NONLINEAR WORLD, V2, P233