Improving the accuracy of volumetric segmentation using pre-processing boundary detection and image reconstruction

被引:14
|
作者
Archibald, R [1 ]
Hu, JX
Gelb, A
Farin, G
机构
[1] Arizona State Univ, Ctr Syst Sci & Engn Res, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Bioengn, Tempe, AZ 85287 USA
[3] Arizona State Univ, PRISM, Tempe, AZ 85287 USA
[4] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[5] Arizona State Univ, Dept Comp Sci, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
edge detection; Gegenbauer reconstruction; magnetic resonance imaging; Weibull E-SD field; three dimensional (3-D) segmentation;
D O I
10.1109/TIP.2003.819862
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The concentration edge -detection and Gegenbauer image-reconstruction methods were previously shown to improve the quality of segmentation in magnetic resonance imaging. In this study, these methods are utilized as a pre-processing step to the Weibull E-SD field segmentation. It is demonstrated that the combination of the concentration edge detection and Gegenbauer reconstruction method improves the accuracy of segmentation for the simulated test data and real magnetic resonance images used in this study.
引用
收藏
页码:459 / 466
页数:8
相关论文
共 50 条
  • [1] Improving image segmentation by using energy function based on mixture of Gaussian pre-processing
    Vakili, Nima
    Rezghi, Mansoor
    Hosseini, S. Mohammad
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 41 : 239 - 246
  • [2] Improving thorax spiral CT image reconstruction with pre-processing treatment
    School of Mechatronics, Northwestern Polytechnical University, Xi'an 710072, China
    不详
    不详
    Xibei Gongye Daxue Xuebao, 2009, 6 (812-816): : 812 - 816
  • [3] Improving Prediction Accuracy of Semantic Segmentation Methods Using Convolutional Autoencoder Based Pre-processing Layers
    Shimodaira, Hisashi
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2024, 4 (02): : 2369 - 2386
  • [4] Introduction to digital image pre-processing and segmentation
    Ao Yan-li
    2015 SEVENTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2015), 2015, : 588 - 593
  • [5] Breast image pre-processing for mammographic tissue segmentation
    He, Wenda
    Hogg, Peter
    Juette, Arne
    Denton, Erika R. E.
    Zwiggelaar, Reyer
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 67 : 61 - 73
  • [6] Pre-processing Techniques: A Review for Retinal Image Segmentation
    Mehidi, Imane
    PROGRAM OF THE 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND AUTOMATIC CONTROL, ICEEAC 2024, 2024,
  • [7] Segmentation as a Pre-processing for Automatic Grape Moths Detection
    Teixeira, Ana Claudia
    Carneiro, Gabriel A.
    Morais, Raul
    Sousa, Joaquim J.
    Cunha, Antonio
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II, 2023, 14116 : 388 - 398
  • [8] Impact of applying pre-processing techniques for improving classification accuracy
    Sharmila, T. Sree
    Ramar, K.
    Raja, T. Sree Renga
    SIGNAL IMAGE AND VIDEO PROCESSING, 2014, 8 (01) : 149 - 157
  • [9] Impact of applying pre-processing techniques for improving classification accuracy
    T. Sree Sharmila
    K. Ramar
    T. Sree Renga Raja
    Signal, Image and Video Processing, 2014, 8 : 149 - 157
  • [10] Improving Spectroface using Pre-processing and Voting
    Santos, Ricardo
    Alexandre, Luis A.
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 4, 2009, : 552 - 556