Electrically conductive nano graphite-filled bacterial cellulose composites

被引:48
作者
Kiziltas, Esra Erbas [1 ,2 ]
Kiziltas, Alper [1 ,3 ]
Rhodes, Kevin [4 ]
Emanetoglu, Nuri W. [5 ]
Blumentritt, Melanie [1 ]
Gardner, Douglas J. [1 ]
机构
[1] Univ Maine, Adv Struct & Composites AEWC Ctr, Orono, ME 04469 USA
[2] Sci & Technol Res Council Turkey TUBITAK, TR-06100 Ankara, Turkey
[3] Univ Bartin, Fac Forestry, Dept Forest Ind Engn, Bartin, Turkey
[4] Ford Motor Co, Energy Storage & Mat Res Dept, Dearborn, MI 48121 USA
[5] Univ Maine, Elect & Comp Engn, Orono, ME USA
关键词
Bacterial cellulose; Electrical conductivity; Exfoliated graphite nanoplatelets; Morphology; Thermal stability; WALLED CARBON NANOTUBES; THERMAL-STABILITY; GRAPHENE; FILMS; MEMBRANES; NANOCOMPOSITES; BIOSYNTHESIS; FABRICATION; FIBERS;
D O I
10.1016/j.carbpol.2015.10.004
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix. The temperature at 10% weight loss, thermal stability and residual ash content of the nanocomposites increased at higher xGnP loadings. The electrical conductivity of the composites increased with increasing xGnP loading (attaining values 0.75 S/cm with the addition of 2 wt.% of xGnP). The enhanced conductive and thermal properties of the BC-xGnP nanocomposites will broaden applications (biosensors, tissue engineering, etc.) of BC and xGnP. (c) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1144 / 1151
页数:8
相关论文
共 40 条
[1]   Synthesis of Isotopically-Labeled Graphite Films by Cold-Wall Chemical Vapor Deposition and Electronic Properties of Graphene Obtained from Such Films [J].
Cai, Weiwei ;
Piner, Richard D. ;
Zhu, Yanwu ;
Li, Xuesong ;
Tan, Zhenbing ;
Floresca, Herman Carlo ;
Yang, Changli ;
Lu, Li ;
Kim, M. J. ;
Ruoff, Rodney S. .
NANO RESEARCH, 2009, 2 (11) :851-856
[2]   Regenerated bacterial cellulose/multi-walled carbon nanotubes composite fibers prepared by wet-spinning [J].
Chen, Peng ;
Kim, Hun-Sik ;
Kwon, Soon-Min ;
Yun, Young Soo ;
Jin, Hyoung-Joon .
CURRENT APPLIED PHYSICS, 2009, 9 (02) :E96-E99
[3]  
El-Saied H, 2008, BIORESOURCES, V3, P1196
[4]   Palladium-bacterial cellulose membranes for fuel cells [J].
Evans, BR ;
O'Neill, HM ;
Malyvanh, VP ;
Lee, I ;
Woodward, J .
BIOSENSORS & BIOELECTRONICS, 2003, 18 (07) :917-923
[5]  
Farjana S, 2013, J SENSORS, V2013, P1
[6]   A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite [J].
Feng, Yiyu ;
Zhang, Xuequan ;
Shen, Yongtao ;
Yoshino, Katsumi ;
Feng, Wei .
CARBOHYDRATE POLYMERS, 2012, 87 (01) :644-649
[7]   Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper [J].
Fugetsu, Bunshi ;
Sano, Eiichi ;
Sunada, Masaki ;
Sambongi, Yuzuru ;
Shibuya, Takao ;
Wang, Xiaoshui ;
Hiraki, Toshiaki .
CARBON, 2008, 46 (09) :1256-1258
[8]   Thermal stability of polycarbonate-graphene nanocomposite foams [J].
Gedler, G. ;
Antunes, M. ;
Realinho, V. ;
Velasco, J. I. .
POLYMER DEGRADATION AND STABILITY, 2012, 97 (08) :1297-1304
[9]   Functionalized bacterial cellulose derivatives and nanocomposites [J].
Hu, Weili ;
Chen, Shiyan ;
Yang, Jingxuan ;
Li, Zhe ;
Wang, Huaping .
CARBOHYDRATE POLYMERS, 2014, 101 :1043-1060
[10]   Flexible Electrically Conductive Nanocomposite Membrane Based on Bacterial Cellulose and Polyaniline [J].
Hu, Weili ;
Chen, Shiyan ;
Yang, Zhenhua ;
Liu, Luting ;
Wang, Huaping .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (26) :8453-8457