Polytetrafluoroethylene content in standalone microporous layers: Tradeoff between membrane hydration and mass transport losses in polymer electrolyte membrane fuel cells

被引:36
作者
Wong, A. K. C. [1 ]
Ge, N. [1 ]
Shrestha, P. [1 ]
Liu, H. [1 ]
Fahy, K. [1 ]
Bazylak, A. [1 ]
机构
[1] Univ Toronto, Thermofluids Energy & Adv Mat Lab, Dept Mech & Ind Engn, Inst Sustainable Energy,Fac Appl Sci & Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会; 加拿大健康研究院;
关键词
Polymer electrolyte membrane fuel cells; Gas diffusion layers; Microporous layers; Oxygen transport; Synchrotron radiography; GAS-DIFFUSION LAYERS; MICRO-POROUS LAYER; LIQUID WATER TRANSPORT; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; X-RAY RADIOGRAPHY; PTFE CONTENT; THERMAL-CONDUCTIVITY; CAPILLARY CONDENSATION; CARBON-BLACK; 2-PHASE FLOW;
D O I
10.1016/j.apenergy.2019.02.037
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Fuel cell performance testing and in operando synchrotron radiography were used to investigate the effect of polytetrafluoroethylene (PTFE) in standalone microporous layers (MPLs) on mass transport and membrane hydration. Two standalone MPLs with 20 wt% and 30 wt% PTFE were fabricated and tested with inlet gas relative humidity (RH) between 50 and 100%. This study demonstrates that the performance of a fuel cell using a standalone MPL with 30 wt% PTFE decreases when the RH of the inlet gases is increased from 50% to 100%, whereas the performance of a fuel cell using a standalone MPL with 20 wt% PTFE remains stable over the same relative humidity range. Furthermore, this study demonstrates that a tradeoff between membrane hydration and mass transport losses must be considered when increasing the PTFE content within the MPL. Higher PTFE content led to greater liquid water accumulation adjacent to the catalyst layer. The greater liquid water accumulation adjacent to the catalyst layer improved membrane hydration and proton conductivity but also led to an increase in mass transport resistance. Standalone MPLs with higher PTFE content did not support high current density operation because the mass transport limitations outweighed the benefits of improved membrane hydration.
引用
收藏
页码:549 / 560
页数:12
相关论文
共 78 条
[1]   In Operando Quantification of Three-Dimensional Water Distribution in Nanoporous Carbon-Based Layers in Polymer Electrolyte Membrane Fuel Cells [J].
Alrwashdeh, Saad S. ;
Manke, Ingo ;
Markoetter, Henning ;
Klages, Merle ;
Goebel, Martin ;
Haussmann, Jan ;
Scholta, Joachim ;
Banhart, John .
ACS NANO, 2017, 11 (06) :5944-5949
[2]   Investigation of water transport dynamics in polymer electrolyte membrane fuel cells based on high porous micro porous layers [J].
Alrwashdeh, Saad S. ;
Markoetter, Henning ;
Haussmann, Jan ;
Arlt, Tobias ;
Klages, Merle ;
Scholta, Joachim ;
Banhart, John ;
Manke, Ingo .
ENERGY, 2016, 102 :161-165
[3]   A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells [J].
Andersson, M. ;
Beale, S. B. ;
Espinoza, M. ;
Wu, Z. ;
Lehnertbe, W. .
APPLIED ENERGY, 2016, 180 :757-778
[4]   Balancing mass transport resistance and membrane resistance when tailoring microporous layer thickness for polymer electrolyte membrane fuel cells operating at high current densities [J].
Antonacci, P. ;
Chevalier, S. ;
Lee, J. ;
Ge, N. ;
Hinebaugh, J. ;
Yip, R. ;
Tabuchi, Y. ;
Kotaka, T. ;
Bazylak, A. .
ELECTROCHIMICA ACTA, 2016, 188 :888-897
[5]   Feasibility of combining electrochemical impedance spectroscopy and synchrotron X-ray radiography for determining the influence of liquid water on polymer electrolyte membrane fuel cell performance [J].
Antonacci, P. ;
Chevalier, S. ;
Lee, J. ;
Yip, R. ;
Ge, N. ;
Bazylak, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (46) :16494-16502
[6]   Development and Characterization of Non-Conventional Micro-Porous Layers for PEM Fuel Cells [J].
Balzarotti, Riccardo ;
Latorrata, Saverio ;
Stampino, Paola Gallo ;
Cristiani, Cinzia ;
Dotelli, Giovanni .
ENERGIES, 2015, 8 (07) :7070-7083
[7]   Modeling heat transfer through phase-differentiated nano-scale constructions of polymer electrolyte membrane fuel cell microporous layers [J].
Banerjee, R. ;
Bazylak, A. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 92 :131-138
[8]   Transient Liquid Water Distributions in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers Observed through In-Operando Synchrotron X-ray Radiography [J].
Banerjee, Rupak ;
Ge, Nan ;
Lee, Jongmin ;
George, Michael G. ;
Chevalier, Stephane ;
Liu, Hang ;
Shrestha, Pranay ;
Muirhead, Daniel ;
Bazylak, Aimy .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :F154-F162
[9]   Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems [J].
Bareiss, Kay ;
de la Rua, Cristina ;
Moeckl, Maximilian ;
Hamacher, Thomas .
APPLIED ENERGY, 2019, 237 :862-872
[10]   Self-Supporting Microporous Layers (MPLs) for PEM Fuel Cells [J].
Bauder, A. ;
Friedrich, K. A. ;
Haussmann, J. ;
Markoetter, H. ;
Manke, I. ;
Alink, R. ;
Scholta, J. .
POLYMER ELECTROLYTE FUEL CELLS 13 (PEFC 13), 2013, 58 (01) :1391-1399