Growth mechanism, photoluminescence, and field-emission properties of ZnO nanoneedle arrays

被引:90
作者
Zhang, Z [1 ]
Yuan, H [1 ]
Zhou, J [1 ]
Liu, D [1 ]
Luo, S [1 ]
Miao, Y [1 ]
Gao, Y [1 ]
Wang, J [1 ]
Liu, L [1 ]
Song, L [1 ]
Xiang, Y [1 ]
Zhao, X [1 ]
Zhou, W [1 ]
Xie, S [1 ]
机构
[1] Chinese Acad Sci, Grad Sch, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China
关键词
D O I
10.1021/jp0568632
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
ZnO nanoneedle arrays have been grown on a large scale with a chemical vapor deposition method at 680 degrees C. Zn powder and O-2 gas are employed as source materials, and catalyst-free Si plates are used as substrates. Energy-dispersive X-ray and X-ray diffraction analyses show that the nanoneedles are almost pure ZnO and preferentially aligned in the c-axis direction of the wurtzite structure. The growth mechanism of ZnO nanoneedle arrays is discussed with the thermodynamic theory and concluded to be the result of the co-effect of the surface tension and diffusion. Photoluminescence spectrum of the as-grown products shows a strong emission band centering at about 484 nm, which originates from oxygen vacancies. Field-emission examination exhibits that the ZnO nanoneedle arrays have a turn-on voltage at about 5.3V/mu m.
引用
收藏
页码:8566 / 8569
页数:4
相关论文
共 30 条
[1]   Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser [J].
Choy, JH ;
Jang, ES ;
Won, JH ;
Chung, JH ;
Jang, DJ ;
Kim, YW .
ADVANCED MATERIALS, 2003, 15 (22) :1911-+
[2]   Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts [J].
Comini, E ;
Faglia, G ;
Sberveglieri, G ;
Pan, ZW ;
Wang, ZL .
APPLIED PHYSICS LETTERS, 2002, 81 (10) :1869-1871
[3]   Low-temperature growth and field emission of ZnO nanowire arrays -: art. no. 044315 [J].
Cui, JB ;
Daghlian, CP ;
Gibson, UJ ;
Püsche, R ;
Geithner, P ;
Ley, L .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (04)
[4]   Conversion of zinc oxide nanobelts into superlattice-structured nanohelices [J].
Gao, PX ;
Ding, Y ;
Mai, WJ ;
Hughes, WL ;
Lao, CS ;
Wang, ZL .
SCIENCE, 2005, 309 (5741) :1700-1704
[5]   Stimulated emission and lasing of random-growth oriented ZnO nanowires [J].
Hsu, HC ;
Wu, CY ;
Hsieh, WF .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (06)
[6]   Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes [J].
Hu, JQ ;
Li, Q ;
Meng, XM ;
Lee, CS ;
Lee, ST .
CHEMISTRY OF MATERIALS, 2003, 15 (01) :305-308
[7]   Characterization of zinc oxide crystal whiskers grown by thermal evaporation [J].
Hu, JQ ;
Ma, XL ;
Xie, ZY ;
Wong, NB ;
Lee, CS ;
Lee, ST .
CHEMICAL PHYSICS LETTERS, 2001, 344 (1-2) :97-100
[8]   Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes [J].
Hu, JT ;
Odom, TW ;
Lieber, CM .
ACCOUNTS OF CHEMICAL RESEARCH, 1999, 32 (05) :435-445
[9]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[10]   ZnS nanowires with wurtzite polytype modulated structure [J].
Jiang, Y ;
Meng, XM ;
Liu, J ;
Hong, ZR ;
Lee, CS ;
Lee, ST .
ADVANCED MATERIALS, 2003, 15 (14) :1195-+