STRONGNESS OF COMPANION BASES FOR CLUSTER-TILTED ALGEBRAS OF FINITE TYPE

被引:1
作者
Baur, Karin [1 ]
Nasr-Isfahani, Alireza [2 ,3 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Wissensch Rechnen, Heinrichstr 36, A-8010 Graz, Austria
[2] Univ Isfahan, Dept Math, POB 81746-73441, Esfahan, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
基金
奥地利科学基金会;
关键词
Cluster-tilted algebra; companion basis; indecomposable modules; dimension vector; relation-extension algebra; root system; Euler form; QUIVERS;
D O I
10.1090/proc/13977
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For every cluster-tilted algebra of simply-laced Dynkin type we provide a companion basis which is strong, i.e., gives the set of dimension vectors of the finitely generated indecomposable modules for the cluster-tilted algebra. This shows in particular that every companion basis of a cluster-tilted algebra of simply-laced Dynkin type is strong. Thus we give a proof of Parsons's conjecture.
引用
收藏
页码:2409 / 2416
页数:8
相关论文
共 14 条
[1]   Cluster-tilted algebras as trivial extensions [J].
Assem, I. ;
Bruestle, T. ;
Schiffler, R. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 :151-162
[2]   Cluster algebras of finite type and positive symmetrizable matrices [J].
Barot, Michael ;
Ceiss, Christof ;
Zelevinsky, Andrei .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 :545-564
[3]  
Buan AB, 2008, COMMENT MATH HELV, V83, P143
[4]  
Buan AB, 2007, T AM MATH SOC, V359, P323
[5]   Tilting theory and cluster combinatorics [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reineke, Markus ;
Reiten, Idun ;
Todorov, Gordana .
ADVANCES IN MATHEMATICS, 2006, 204 (02) :572-618
[6]   Quivers with relations arising from clusters (An case) [J].
Caldero, P ;
Chapoton, F ;
Schiffler, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) :1347-1364
[7]   Quivers with relations and cluster tilted algebras [J].
Caldero, Philippe ;
Chapoton, Frederic ;
Schiffler, Ralf .
ALGEBRAS AND REPRESENTATION THEORY, 2006, 9 (04) :359-376
[8]   Cluster algebras II: Finite type classification [J].
Fomin, S ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2003, 154 (01) :63-121
[9]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[10]  
Nakanishi Tomoki., 2014, ELECTRON J COMB, V21, P107