Hyperbolicity in median graphs

被引:17
作者
Sigarreta, Jose M. [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Acalpulco Gro 39650, Mexico
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2013年 / 123卷 / 04期
关键词
Median graph; Gromov hyperbolicity; Gromov hyperbolic graph; infinite graphs; geodesics; GROMOV HYPERBOLICITY; CONSTANT; METRICS;
D O I
10.1007/s12044-013-0149-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If X is a geodesic metric space and x(1), x(2), x(3) is an element of X, a geodesic triangle T = {x(1), x(2), x(3)} is the union of the three geodesics [x(1)x(2)], [x(2)x(3)] and [x(3)x(1)] in X. The space X is delta-hyperbolic (in the Gromov sense) if any side of T is contained in a delta-neighborhood of the union of the two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by delta(X) the sharp hyperbolicity constant of X, i.e., delta(X) = inf{delta >= 0 : X is delta-hyperbolic). In this paper we study the hyperbolicity of median graphs and we also obtain some results about general hyperbolic graphs. In particular, we prove that a median graph is hyperbolic if and only if its bigons are thin.
引用
收藏
页码:455 / 467
页数:13
相关论文
共 47 条
[11]  
Carballosa W, 2012, ELECTRON J COMB, V19
[12]  
Carballosa W, 2011, ELECTRON J COMB, V18
[13]   Graph homotopy and Graham homotopy [J].
Chen, BF ;
Yau, ST ;
Yeh, YN .
DISCRETE MATHEMATICS, 2001, 241 (1-3) :153-170
[14]  
CHEPOI V, 2007, PACKING COVERING DEL, V4627, P59
[15]  
Eppstein D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P29
[16]  
FEDER T, 1995, MEM AM MATH SOC, V116, P1
[17]   Characterizing hyperbolic spaces and real trees [J].
Frigerio, Roberto ;
Sisto, Alessandro .
GEOMETRIAE DEDICATA, 2009, 142 (01) :139-149
[18]  
Gavoille C, 2005, LECT NOTES COMPUT SC, V3827, P1071, DOI 10.1007/11602613_106
[19]  
Ghys E., 1990, Progr. Math., V83
[20]  
Gromov M., 1987, ESSAYS GROUP THEORY, P75, DOI 10.1007/978-1-4613-9586-7_3