Hyperbolicity in median graphs

被引:17
作者
Sigarreta, Jose M. [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Acalpulco Gro 39650, Mexico
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2013年 / 123卷 / 04期
关键词
Median graph; Gromov hyperbolicity; Gromov hyperbolic graph; infinite graphs; geodesics; GROMOV HYPERBOLICITY; CONSTANT; METRICS;
D O I
10.1007/s12044-013-0149-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If X is a geodesic metric space and x(1), x(2), x(3) is an element of X, a geodesic triangle T = {x(1), x(2), x(3)} is the union of the three geodesics [x(1)x(2)], [x(2)x(3)] and [x(3)x(1)] in X. The space X is delta-hyperbolic (in the Gromov sense) if any side of T is contained in a delta-neighborhood of the union of the two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by delta(X) the sharp hyperbolicity constant of X, i.e., delta(X) = inf{delta >= 0 : X is delta-hyperbolic). In this paper we study the hyperbolicity of median graphs and we also obtain some results about general hyperbolic graphs. In particular, we prove that a median graph is hyperbolic if and only if its bigons are thin.
引用
收藏
页码:455 / 467
页数:13
相关论文
共 47 条
[1]  
Alonso J., 1992, Group Theory from a Geometrical Viewpoint
[2]  
[Anonymous], 2001, ASTERISQUE
[3]  
[Anonymous], 2008, ELECT NOTES DISCRET
[4]   Geometric characterizations of Gromov hyperbolicity [J].
Balogh, ZM ;
Buckley, SM .
INVENTIONES MATHEMATICAE, 2003, 153 (02) :261-301
[5]   MEDIAN ALGEBRAS [J].
BANDELT, HJ ;
HEDLIKOVA, J .
DISCRETE MATHEMATICS, 1983, 45 (01) :1-30
[6]  
Bermudo S, DISCRETIZATION SMALL
[7]   Gromov hyperbolic graphs [J].
Bermudo, Sergio ;
Rodriguez, Jose M. ;
Sigarreta, Jose M. ;
Vilaire, Jean-Marie .
DISCRETE MATHEMATICS, 2013, 313 (15) :1575-1585
[8]   Computing the hyperbolicity constant [J].
Bermudo, Sergio ;
Rodriguez, Jose M. ;
Sigarreta, Jose M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (12) :4592-4595
[9]   Hyperbolicity and complement of graphs [J].
Bermudo, Sergio ;
Rodriguez, Jose M. ;
Sigarreta, Jose M. ;
Touris, Eva .
APPLIED MATHEMATICS LETTERS, 2011, 24 (11) :1882-1887
[10]  
Brinkmann G., 2001, Annals of Combinatorics, V5, P61, DOI [DOI 10.1007/S00026, 10.1007/s00026-001-8007-7, DOI 10.1007/S00026-001-8007-7]