Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties

被引:247
作者
Augustine, Robin [1 ]
Malik, Hruda Nanda [4 ]
Singhal, Dinesh Kumar [4 ]
Mukherjee, Ayan [4 ]
Malakar, Dhruba [4 ]
Kalarikkal, Nandakumar [1 ,2 ]
Thomas, Sabu [1 ,3 ]
机构
[1] Mahatma Gandhi Univ, Int & Inter Univ Ctr Nanosci & Nanotechnol, Kottayam 686560, Kerala, India
[2] Mahatma Gandhi Univ, Sch Pure & Appl Phys, Kottayam 686560, Kerala, India
[3] Mahatma Gandhi Univ, Sch Chem Sci, Kottayam 686560, Kerala, India
[4] Natl Dairy Res Inst, Anim Biotechnol Ctr, Karnal 132001, India
关键词
Polycaprolactone; ZnO nanoparticles; Scaffolds; Wound healing; Antimicrobial; Fibroblasts; MECHANICAL-PROPERTIES; CERAMIC POWDERS; PARTICLE-SIZE; POLYMER-FILMS; NANOPARTICLES; PHOSPHORYLATION; TEMPERATURE; SCAFFOLD; ROS;
D O I
10.1007/s10965-013-0347-6
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In the present study we have investigated the effect of zinc oxide (ZnO) nanoparticles on the fiber diameter, fiber morphology, antibacterial activity, and enhanced cell proliferation of the electrospun polycaprolactone (PCL) non-woven membrane. The effect of the ZnO nanoparticle concentration on the fiber diameter and fiber morphology was investigated using a scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FT-IR) analysis was carried out to determine the nature of the interaction between the PCL and the ZnO nanoparticles. We also investigated the mechanical stability and antibacterial activity of the fabricated material. Interestingly, the membranes with ZnO nanoparticles showed enhanced mechanical stability, antibacterial properties, fibroblast proliferation, and improved metabolic activity of the cells. Further, this is the first report regarding the ability of a biomaterial containing ZnO nanoparticles to enhance cell proliferation.
引用
收藏
页数:17
相关论文
共 60 条
[1]   Use of electrospinning technique for biomedical applications [J].
Agarwal, Seema ;
Wendorff, Joachim H. ;
Greiner, Andreas .
POLYMER, 2008, 49 (26) :5603-5621
[2]  
Ashutosh K., 2011, FREE RADICAL BIO MED, V51, P1872, DOI [10.1016/j.freeradbiomed.2011.08.025, DOI 10.1016/J.FREERADBIOMED.2011.08.025]
[3]   Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid) [J].
Aslan, Seyma ;
Loebick, Codruta Zoican ;
Kang, Seoktae ;
Elimelech, Menachem ;
Pfefferle, Lisa D. ;
Van Tassel, Paul R. .
NANOSCALE, 2010, 2 (09) :1789-1794
[4]   Zinc oxide nanoflowers make new blood vessels [J].
Barui, Ayan Kumar ;
Veeriah, Vimal ;
Mukherjee, Sudip ;
Manna, Joydeb ;
Patel, Ajay Kumar ;
Patra, Sujata ;
Pal, Krishnendu ;
Murali, Shruthi ;
Rana, Rohit K. ;
Chatterjee, Suvro ;
Patra, Chitta Ranjan .
NANOSCALE, 2012, 4 (24) :7861-7869
[5]   ELECTROSTATIC SPINNING OF ACRYLIC MICROFIBERS [J].
BAUMGARTEN, PK .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1971, 36 (01) :71-+
[6]  
Branda o-Neto J, 1995, NUTR RES, V15, P335
[7]   REACTIVE OXYGEN SPECIES (ROS) - A FAMILY OF FATE DECIDING MOLECULES PIVOTAL IN CONSTRUCTIVE INFLAMMATION AND WOUND HEALING [J].
Bryan, Nicholas ;
Ahswin, Helen ;
Smart, Neil ;
Bayon, Yves ;
Wohlert, Stephen ;
Hunt, John A. .
EUROPEAN CELLS & MATERIALS, 2012, 24 :249-265
[8]  
Cevat E, 2008, BIOMATERIALS, V29, P4065
[9]  
DOSHI J, 1995, J ELECTROSTAT, V35, P151, DOI 10.1016/0304-3886(95)00041-8
[10]   Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation [J].
Dutta, R. K. ;
Nenavathu, Bhavani P. ;
Gangishetty, Mahesh K. ;
Reddy, A. V. R. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2012, 94 :143-150