The constitutive properties of the brain paraenchyma Part 2. Fractional derivative approach

被引:54
作者
Davis, G. B. [1 ]
Kohandel, M. [1 ]
Sivaloganathan, S. [1 ]
Tenti, G. [1 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
brain biomechanics; viscoelasticity; fractional derivative; mathematical modeling;
D O I
10.1016/j.medengphy.2005.07.023
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Fractional models have proven to be very useful for studying viscoelastic materials. We consider the fractional Zener model (also called four-parameter model) to study both the relaxation function and creep compliance. The analytical results are compared with the known experimental results of the human brain tissue to obtain the best fit and brain mechanical parameters. The results are also compared to the non-fractional Zener model and four-parameter Burgers model, indicating that the four-parameter fractional model gives a substantially better fit for the all experimental data. (c) 2005 IPEM. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:455 / 459
页数:5
相关论文
共 21 条
[1]   FRACTIONAL CALCULUS - A DIFFERENT APPROACH TO THE ANALYSIS OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
TORVIK, PJ .
AIAA JOURNAL, 1983, 21 (05) :741-748
[2]   A THEORETICAL BASIS FOR THE APPLICATION OF FRACTIONAL CALCULUS TO VISCOELASTICITY [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1983, 27 (03) :201-210
[3]  
BRETT PN, 1995, IEEE ENG MED BIOL, P264
[4]  
BURDEA, 1996, FORCE TOUCH FEEDBACK
[5]  
ESTES MS, 1970, 70HBHF13 ASME
[6]  
Findley W.N., 1976, Creep and Relaxation of Nonlinear Viscoelastic Materials
[7]  
FUNG YC, 1981, BIOMECHANICS MECH PR
[8]   A VISCOELASTIC STUDY OF SCALP, BRAIN, AND DURA [J].
GALFORD, JE ;
MCELHANEY, JH .
JOURNAL OF BIOMECHANICS, 1970, 3 (02) :211-+
[9]  
HAKIM S, 1971, ACTA NEUROL LATIN S1, V17, P169
[10]  
Kaczmarek M, 1997, B MATH BIOL, V59, P295