Existence of CMC and constant areal time foliations in T2 symmetric spacetimes with Vlasov matter

被引:19
作者
Andréasson, H
Rendall, AD
Weaver, M
机构
[1] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
[2] Max Planck Inst Gravitat Phys, Golm, Germany
[3] Univ Alberta, Dept Phys, Edmonton, AB, Canada
关键词
Einstein's equations; Vlasov equation; constant mean curvature foliation;
D O I
10.1081/PDE-120028852
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global structure of solutions of the Einstein equations coupled to the Vlasov equation is investigated in the presence of a two-dimensional symmetry group. It is. shown that there exist global CMC and areal time foliations. The proof is based on long-time existence theorems for the partial differential equations resulting from the Einstein-Vlasov system when conformal or areal coordinates are introduced.
引用
收藏
页码:237 / 262
页数:26
相关论文
共 18 条
[1]   Global foliations of matter spacetimes with Gowdy symmetry [J].
Andréasson, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 206 (02) :337-365
[2]   Global foliations of vacuum spacetimes with T-2 isometry [J].
Berger, BK ;
Chrusciel, PT ;
Isenberg, J ;
Moncrief, V .
ANNALS OF PHYSICS, 1997, 260 (01) :117-148
[3]   FR CAUCHY-PROBLEM FOR EINSTEIN-LIOUVILLE DIFFERENTIAL INTEGRAL SYSTEM [J].
CHOQUETBRUHAT, Y .
ANNALES DE L INSTITUT FOURIER, 1971, 21 (03) :181-+
[4]   ON THE ONE AND 1/2 DIMENSIONAL RELATIVISTIC VLASOV-MAXWELL SYSTEM [J].
GLASSEY, R ;
SCHAEFFER, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 13 (02) :169-179
[5]   The ''two and one-half dimensional'' relativistic Vlasov Maxwell system [J].
Glassey, R ;
Schaeffer, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (02) :257-284
[6]  
GLASSEY R, 1986, ARCH RATION MECH AN, V92, P56
[7]  
Henkel O, 2002, J MATH PHYS, V43, P2466, DOI 10.1063/1.1466883
[8]   Cosmological spacetimes not covered by a constant mean curvature slicing [J].
Isenberg, J ;
Rendall, AD .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (11) :3679-3688
[9]   PROPAGATION OF MOMENTS AND REGULARITY FOR THE 3-DIMENSIONAL VLASOV-POISSON SYSTEM [J].
LIONS, PL ;
PERTHAME, B .
INVENTIONES MATHEMATICAE, 1991, 105 (02) :415-430
[10]   MAXIMAL HYPERSURFACES AND FOLIATIONS OF CONSTANT MEAN-CURVATURE IN GENERAL-RELATIVITY [J].
MARSDEN, JE ;
TIPLER, FJ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1980, 66 (03) :109-139