The comparative study on interactions between ionic liquid and CO2/SO2 by a hybrid density functional approach in the gas phase

被引:11
作者
Gu, Peng [1 ]
Lu, Renqing [2 ]
Wang, Shutao [2 ]
Lu, Yukun [2 ]
Liu, Dong [1 ]
机构
[1] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Sci, Qingdao 266580, Peoples R China
关键词
Density functional theory; Ionic liquid; SO2; CO2; HIGHLY EFFICIENT SO2; THERMODYNAMIC PROPERTIES; NONBOND INTERACTIONS; CHEMICAL-SHIFTS; CAPTURE; X3LYP; CO2; AROMATICITY; MOLECULES; BOND;
D O I
10.1016/j.comptc.2013.06.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By using hybrid density functional calculations, we have carried out theoretical studies of the interactions between 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO4]) ionic liquid and CO2/SO2. The interacting structures between [BMIM][MeSO4] and CO2/SO2 are significantly different. The optimized structure of [BMIM][MeSO4]-CO2 demonstrates that the dominant interaction between CO2 and [BMIM] [MeSO4] is LP(O29) -> pi*(C35-036). While the strong interactions between SO2 and [BMIM][MeSO4] are LP(O36) -> sigma*(C3-H12), LP(O36) -> sigma*(C4-H13), and LP(O28) -> pi*(S35-O37). The most dominant interaction between SO2 and [BMIM][MeSO4] is LP(O28) -> pi*(S35-O37), with the electrons mainly migration from the highest occupied molecular orbital (HOMO) of [MeSO4](-) anion to the lowest unoccupied molecular orbital (LUMO) of SO2. The interaction energy between [BMIM][MeSO4] and SO2 is larger than that between [BMIM][MeSO4] and CO2. The imidazolium ring of [BMIM][MeSO4] is more aromatic than that of [BMIM][MeSO4]-SO2, but less aromatic than that of [BMIM][MeSO4]-CO2. CO2 acts as an electron donor when it interacts with [BMIM][MeSO4], while SO2 is an electron acceptor when it interacts with [BMIM][MeSO4]. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 31
页数:10
相关论文
共 46 条
[1]   A QUANTUM-THEORY OF MOLECULAR-STRUCTURE AND ITS APPLICATIONS [J].
BADER, RFW .
CHEMICAL REVIEWS, 1991, 91 (05) :893-928
[2]  
Batsanov S.S., 2008, Experimental Foundations of Structural Chemistry
[3]  
Biddle J.C., 2010, METHODS COMPUTATIONA
[4]  
BIRD CW, 1985, TETRAHEDRON, V41, P1409, DOI 10.1016/S0040-4020(01)96543-3
[5]   Evaluation of B3LYP, X3LYP, and M06-Class Density Functionals for Predicting the Binding Energies of Neutral, Protonated, and Deprotonated Water Clusters [J].
Bryantsev, Vyacheslav S. ;
Diallo, Mamadou S. ;
van Duin, Adri C. T. ;
Goddard, William A., III .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (04) :1016-1026
[6]   Ab Initio Prediction of Proton NMR Chemical Shifts in Imidazolium Ionic Liquids [J].
Chen, Su ;
Vijayaraghavan, R. ;
MacFarlane, Douglas R. ;
Izgorodina, Ekaterina I. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (11) :3186-3197
[7]   Highly efficient SO2 capture by dual functionalized ionic liquids through a combination of chemical and physical absorption [J].
Cui, Guokai ;
Wang, Congmin ;
Zheng, Junjie ;
Guo, Yan ;
Luo, Xiaoyan ;
Li, Haoran .
CHEMICAL COMMUNICATIONS, 2012, 48 (20) :2633-2635
[8]   INVESTIGATION OF DONOR-ACCEPTOR INTERACTIONS - A CHARGE DECOMPOSITION ANALYSIS USING FRAGMENT MOLECULAR-ORBITALS [J].
DAPPRICH, S ;
FRENKING, G .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (23) :9352-9362
[9]   A TEST OF THE HIRSHFELD DEFINITION OF ATOMIC CHARGES AND MOMENTS [J].
DAVIDSON, ER ;
CHAKRAVORTY, S .
THEORETICA CHIMICA ACTA, 1992, 83 (5-6) :319-330
[10]   Conceptual and computational DFT in the study of aromaticity [J].
De Proft, F ;
Geerlings, P .
CHEMICAL REVIEWS, 2001, 101 (05) :1451-1464