A non-conforming finite volume element method for the two-dimensional Navier-Stokes/Darcy system

被引:2
作者
Wu, Yanyun [1 ]
Mei, Liquan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
关键词
Non-conforming finite volume element method; Navier-Stokes/Darcy equations; Error estimation; EQUATIONS; MODEL; FLOW;
D O I
10.1007/s40314-016-0355-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the discretization of the stationary Navier-Stokes/Darcy system in a two-dimensional domain by the non-conforming finite volume element method. We use the standard formulation of the Navier-Stokes/Darcy system in the primitive variables and take as approximation space the non-conforming P-1 elements for velocity and piezometric head and piecewise constant elements for the hydrostatic pressure. We prove that the unique solution of the non-conforming finite volume element method converges to the true solution with optimal order for velocity and piezometric head in discrete H-1 norm and for pressure in discrete L-2 norm, respectively. Finally, some numerical experiments are presented to validate our theoretical results.
引用
收藏
页码:457 / 474
页数:18
相关论文
共 50 条
[31]   An entropy stable finite volume scheme for the two dimensional Navier-Stokes equations on triangular grids [J].
Ray, Deep ;
Chandrashekar, Praveen .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 :257-286
[32]   Stability of two-dimensional Navier-Stokes motions in the periodic case [J].
Zadrzynska, Ewa ;
Zajaczkowski, Wojciech M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) :956-974
[33]   Stabilized finite-element method for the stationary Navier-Stokes equations [J].
Yinnian He ;
Aiwen Wang ;
Liquan Mei .
Journal of Engineering Mathematics, 2005, 51 :367-380
[34]   A five-field augmented fully-mixed finite element method for the Navier-Stokes/Darcy coupled problem [J].
Gatica, Gabriel N. ;
Oyarzua, Ricardo ;
Valenzuela, Nathalie .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (08) :1944-1963
[35]   LOCAL AND PARALLEL FINITE ELEMENT METHOD FOR THE MIXED NAVIER-STOKES/DARCY MODEL WITH BEAVERS-JOSEPH INTERFACE CONDITIONS [J].
Du, Guangzhi ;
Zuo, Liyun .
ACTA MATHEMATICA SCIENTIA, 2017, 37 (05) :1331-1347
[36]   Moving Mesh Finite Element Method for Unsteady Navier-Stokes Flow [J].
Wu, Yirong ;
Wang, Heyu .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (03) :742-756
[37]   Stabilized finite-element method for the stationary Navier-Stokes equations [J].
He, YN ;
Wang, AW ;
Mei, LQ .
JOURNAL OF ENGINEERING MATHEMATICS, 2005, 51 (04) :367-380
[38]   A stabilised characteristic finite element method for transient Navier-Stokes equations [J].
Zhang, Tong ;
Si, Zhiyong ;
He, Yinnian .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2010, 24 (09) :369-381
[39]   A finite element method for the resolution of the Reduced Navier-Stokes/Prandtl equations [J].
Barrenechea, Gabriel R. ;
Chouly, Franz .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (01) :54-68
[40]   NOVEL FINITE DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Moshkin, N. P. ;
Poochinapan, K. .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2010, 7 (02) :321-329