A non-conforming finite volume element method for the two-dimensional Navier-Stokes/Darcy system

被引:2
作者
Wu, Yanyun [1 ]
Mei, Liquan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
关键词
Non-conforming finite volume element method; Navier-Stokes/Darcy equations; Error estimation; EQUATIONS; MODEL; FLOW;
D O I
10.1007/s40314-016-0355-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the discretization of the stationary Navier-Stokes/Darcy system in a two-dimensional domain by the non-conforming finite volume element method. We use the standard formulation of the Navier-Stokes/Darcy system in the primitive variables and take as approximation space the non-conforming P-1 elements for velocity and piezometric head and piecewise constant elements for the hydrostatic pressure. We prove that the unique solution of the non-conforming finite volume element method converges to the true solution with optimal order for velocity and piezometric head in discrete H-1 norm and for pressure in discrete L-2 norm, respectively. Finally, some numerical experiments are presented to validate our theoretical results.
引用
收藏
页码:457 / 474
页数:18
相关论文
共 50 条
[21]   Finite element method for the coupled Stokes-Darcy-Darcy system [J].
Zuo, Liyun ;
Du, Guangzhi .
APPLIED MATHEMATICS LETTERS, 2025, 164
[22]   A weak Galerkin finite element method for the Navier-Stokes equations [J].
Liu, Xin ;
Li, Jian ;
Chen, Zhangxin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 :442-457
[23]   A postprocessing mixed finite element method for the Navier-Stokes equations [J].
Liu, Qingfang ;
Hou, Yanren .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2009, 23 (06) :461-475
[24]   Pointwise adaptive non-conforming finite element method for the obstacle problem [J].
Porwal, Kamana ;
Singla, Ritesh .
COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03)
[25]   A stabilized finite element method for transient Navier-Stokes equations based on two local Gauss integrations [J].
Jiang, Yu ;
Mei, Liquan ;
Wei, Huiming .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 70 (06) :713-723
[26]   An Eulerian finite element method for the linearized Navier-Stokes problem in an evolving domain [J].
Neilan, Michael ;
Olshanskii, Maxim .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (06) :3234-3258
[27]   On the asymptotic behavior of solutions to the steady Navier-Stokes system in two-dimensional channels [J].
Li, Han ;
Sha, Kaijian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 441
[28]   Ergodicity for the Randomly Forced Navier-Stokes System in a Two-Dimensional Unbounded Domain [J].
Nersesyan, Vahagn .
ANNALES HENRI POINCARE, 2022, 23 (06) :2277-2294
[29]   A stabilized finite volume method for the evolutionary Stokes-Darcy system [J].
Li, Yi ;
Hou, Yanren ;
Li, Rui .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (02) :596-613
[30]   Convergence and error estimates of a penalization finite volume method for the compressible Navier-Stokes system [J].
Lukacova-Medvidova, Maria ;
She, Bangwei ;
Yuan, Yuhuan .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2025, 45 (02) :1054-1101