A non-conforming finite volume element method for the two-dimensional Navier-Stokes/Darcy system

被引:1
|
作者
Wu, Yanyun [1 ]
Mei, Liquan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 01期
关键词
Non-conforming finite volume element method; Navier-Stokes/Darcy equations; Error estimation; EQUATIONS; MODEL; FLOW;
D O I
10.1007/s40314-016-0355-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the discretization of the stationary Navier-Stokes/Darcy system in a two-dimensional domain by the non-conforming finite volume element method. We use the standard formulation of the Navier-Stokes/Darcy system in the primitive variables and take as approximation space the non-conforming P-1 elements for velocity and piezometric head and piecewise constant elements for the hydrostatic pressure. We prove that the unique solution of the non-conforming finite volume element method converges to the true solution with optimal order for velocity and piezometric head in discrete H-1 norm and for pressure in discrete L-2 norm, respectively. Finally, some numerical experiments are presented to validate our theoretical results.
引用
收藏
页码:457 / 474
页数:18
相关论文
共 50 条
  • [1] A non-conforming finite volume element method for the two-dimensional Navier–Stokes/Darcy system
    Yanyun Wu
    Liquan Mei
    Computational and Applied Mathematics, 2018, 37 : 457 - 474
  • [2] A non-conforming finite volume element method of weighted upstream type for the two-dimensional stationary Navier-Stokes system
    Djadel, K.
    Nicaise, S.
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 615 - 634
  • [3] A conforming mixed finite element method for the Navier-Stokes/Darcy coupled problem
    Discacciati, Marco
    Oyarzua, Ricardo
    NUMERISCHE MATHEMATIK, 2017, 135 (02) : 571 - 606
  • [4] A conforming mixed finite element method for the Navier-Stokes/Darcy-Forchheimer coupled problem
    Caucao, Sergio
    Discacciati, Marco
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2020, 54 (05) : 1689 - 1723
  • [5] A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem
    Marco Discacciati
    Ricardo Oyarzúa
    Numerische Mathematik, 2017, 135 : 571 - 606
  • [6] A NONSTANDARD FINITE-ELEMENT METHOD FOR THE STATIONARY TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS
    BAKER, GA
    JUREIDINI, WN
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1987, 13 (04) : 387 - 400
  • [7] A Staggered Scheme with Non-conforming Refinement for the Navier-Stokes Equations
    Babik, Fabrice
    Latche, Jean-Claude
    Piar, Bruno
    Saleh, Khaled
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 87 - 95
  • [8] A strong mass conservative finite element method for the Navier-Stokes/Darcy coupled system
    Camano, Jessika
    Oyarzua, Ricardo
    Seron, Miguel
    Solano, Manuel
    APPLIED MATHEMATICS LETTERS, 2025, 163
  • [9] Convergence analysis of a finite volume method for the Stokes system using non-conforming arguments
    Nicaise, S
    Djadel, K
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (03) : 523 - 548
  • [10] Chebyshev spectral-finite element method for two-dimensional unsteady Navier-Stokes equation
    Guo, BY
    He, SN
    Ma, HP
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2002, 20 (01) : 65 - 78