Radial positive solutions of elliptic systems with Neumann boundary conditions

被引:23
作者
Bonheure, Denis [1 ]
Serra, Enrico [2 ]
Tilli, Paolo [2 ]
机构
[1] Univ Libre Bruxelles, Dept Math, B-1050 Brussels, Belgium
[2] Politecn Torino, Dipartimento Sci Matemat, I-10129 Turin, Italy
关键词
Elliptic system; Supercritical growth; Radial solutions; Neumann problem; FIXED-POINTS;
D O I
10.1016/j.jfa.2013.05.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider radial solutions of elliptic systems of the form [GRAPHICS] where essentially a, b are assumed to be radially nondecreasing weights and f, g are nondecreasing in each component. With few assumptions on the nonlinearities, we prove the existence of at least one couple of nondecreasing nontrivial radial solutions. We emphasize that we do not assume any variational structure nor subcritical growth on the nonlinearities. Our result covers systems with supercritical as well as asymptotically linear nonlinearities. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:375 / 398
页数:24
相关论文
共 15 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
[Anonymous], 1992, Differ Integral Equ
[4]   Increasing radial solutions for Neumann problems without growth restrictions [J].
Bonheure, Denis ;
Noris, Benedetta ;
Weth, Tobias .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (04) :573-588
[5]   Radial and non radial solutions for Hardy-Henon type elliptic systems [J].
Calanchi, Marta ;
Ruf, Bernhard .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (1-2) :111-133
[6]  
DANCER EN, 1986, J REINE ANGEW MATH, V371, P46
[8]  
de Figueiredo DG, 2008, HBK DIFF EQUAT STATI, V5, P1, DOI 10.1016/S1874-5733(08)80008-3
[9]  
Granas A., 2003, Fixed Point Theory, DOI DOI 10.1007/978-0-387-21593-8
[10]  
Krasnoselskii MA., 1964, POSITIVE SOLUTIONS O