L∞-stability of nonlinear time-delay systems

被引:0
|
作者
He, HL [1 ]
Zhou, BH [1 ]
Li, W [1 ]
机构
[1] Naval Univ Engn, Coll Sci, Wuhan 300130, Peoples R China
关键词
time-delay; nonlinear systems; bounded input-bounded output stable;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using Lyapunov-Razumikhin functional analysis, it is discussed for the L-infinity bounded input-bounded output stability criterion for a class of nonlinear systems with nonlinear finite time-delay. Under the conditions of the zero beings the uniformly asymptotically stable point of unforced systems and of the state equations and the output terms not being larger than some class K functions, this paper gives the L-infinity bounded input-bounded output stability criterion. This criterion is easy to test and determine.
引用
收藏
页码:968 / 973
页数:6
相关论文
共 50 条
  • [31] DECOUPLING OF NONLINEAR TIME-DELAY SYSTEMS
    TZAFESTAS, SG
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1974, 5 (04) : 301 - 307
  • [32] Integrability for Nonlinear Time-Delay Systems
    Kaldmae, Arvo
    Califano, Claudia
    Moog, Claude H.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (07) : 1912 - 1917
  • [33] Accessibility of Nonlinear Time-Delay Systems
    Califano, Claudia
    Moog, Claude H.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (03) : 1254 - 1268
  • [34] Passivity of nonlinear time-delay systems
    Kawano, Yu
    Ahmed, Saeed
    Cucuzzella, Michele
    Scherpen, Jacquelien M. A.
    IFAC PAPERSONLINE, 2023, 56 (02): : 8568 - 8573
  • [35] Accessibility of nonlinear time-delay systems
    Marquez, LA
    Moog, CH
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 4622 - 4627
  • [36] FILTERING IN NONLINEAR TIME-DELAY SYSTEMS
    YU, TK
    SEINFELD, JH
    RAY, WH
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (04) : 324 - 333
  • [37] CONTROLLABILITY OF NONLINEAR TIME-DELAY SYSTEMS
    MIRZA, KB
    WOMACK, BF
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (06) : 812 - &
  • [38] Robust stability of nonlinear time-delay systems with applications to neural networks
    Ye, H
    Michel, AN
    Wang, KN
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1996, 43 (07) : 532 - 543
  • [39] Absolute exponential stability criteria for a class of nonlinear time-delay systems
    Zhang, Baoyong
    Lam, James
    Xu, Shengyuan
    Shu, Zhan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (03) : 1963 - 1976
  • [40] Fuzzy control of Nonlinear time-delay systems: Stability and design issues
    Gu, YR
    Wang, HO
    Tanaka, K
    Bushnell, LG
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 4771 - 4776