Classical and nonclassical symmetries of a generalized Boussinesq equation

被引:31
作者
Gandarias, ML [1 ]
Bruzon, MS [1 ]
机构
[1] Univ Cadiz, Dept Matemat, Cadiz 11510, Spain
关键词
D O I
10.2991/jnmp.1998.5.1.2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the Lie-group formalism and the nonclassical method due to Bluman and Cole to deduce symmetries of the generalized Boussinesq equation, which has the classical Boussinesq equation as an special case. We study the class of functions f(u) for which this equation admit either the classical or the nonclassical method. The reductions obtained are derived. Some new exact solutions can be derived.
引用
收藏
页码:8 / 12
页数:5
相关论文
共 10 条
[1]  
Bluman G. W., 1989, Symmetries and Differential Equations
[2]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[3]  
Boussinesq J., 1871, CR HEBD ACAD SCI, V73, P256
[4]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[5]   Classical point symmetries of a porous medium equation [J].
Gandarias, ML .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (03) :607-633
[7]   THE CONSTRUCTION OF SPECIAL SOLUTIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
OLVER, PJ ;
ROSENAU, P .
PHYSICS LETTERS A, 1986, 114 (03) :107-112
[8]   GROUP-INVARIANT SOLUTIONS OF DIFFERENTIAL-EQUATIONS [J].
OLVER, PJ ;
ROSENAU, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (02) :263-278
[9]  
Olver PJ., 1986, Applications of Lie groups to differential equations, DOI 10.1007/978-1-4684-0274-2
[10]  
Ovsiannikov LV., 1982, Group analysis of differential equations