Existence and regularity of positive solutions of a degenerate elliptic problem

被引:9
作者
Guo, ZongMing [1 ]
Guan, XiaoHong [1 ]
Wan, FangShu [2 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
degenerate elliptic equations; embeddings of weighted Sobolev spaces; existence; regularity; WEIGHTED SOBOLEV SPACES; MORSE-INDEX SOLUTIONS; LIOUVILLE-TYPE THEOREMS; EXTREMAL-FUNCTIONS; EMBEDDINGS; SYMMETRY; APPROXIMATION; INEQUALITIES; EQUATIONS; BEHAVIOR;
D O I
10.1002/mana.201700352
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Existence and regularity of positive solutions of a degenerate elliptic Dirichlet problem of the form -div(a(x)del u) = b(x)u(p) in Omega, u = 0 on partial derivative Omega, where Omega is a bounded smooth domain in R-N, N >= 1, are obtained via new embeddings of some weighted Sobolev spaces with singular weights a(x) and b(x). It is seen that a(x) and b(x) admit many singular points in Omega. The main embedding results in this paper provide some generalizations of the well-known Caffarelli-Kohn-Nirenberg inequality.
引用
收藏
页码:56 / 78
页数:23
相关论文
共 37 条
[1]  
[Anonymous], 1985, Physical Origins and Classical Methods
[2]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[3]   On the existence of extremal functions for a weighted Sobolev embedding with critical exponent [J].
Caldiroli, P ;
Musina, R .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 8 (04) :365-387
[4]   On a variational degenerate elliptic problem [J].
Caldiroli, P ;
Musina, R .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (02) :187-199
[5]   Asymptotic behavior for elliptic problems with singular coefficient and nearly critical Sobolev growth [J].
Cao, Daomin ;
Peng, Shuangjie .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2006, 185 (02) :189-205
[6]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[7]  
2-I
[8]  
Chabrowski J., 1996, Portugaliae Math, V53, P167
[9]   ON THE BEST CONSTANT FOR A WEIGHTED SOBOLEV-HARDY INEQUALITY [J].
CHOU, KS ;
CHU, CW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1993, 48 :137-151
[10]   Finite Morse index solutions of an elliptic equation with supercritical exponent [J].
Dancer, E. N. ;
Du, Yihong ;
Guo, Zongming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (08) :3281-3310