Left Invariant Einstein-Randers Metrics on Compact Lie Groups

被引:9
|
作者
Wang, Hui [1 ]
Deng, Shaoqiang [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210003, Jiangsu, Peoples R China
[2] Nankai Univ, Coll Math, Tianjin 300071, Peoples R China
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2012年 / 55卷 / 04期
关键词
Einstein-Randers metric; compact Lie groups; geodesic; flag curvature; ISOMETRIES; GEODESICS;
D O I
10.4153/CMB-2011-145-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study left invariant Einstein-Randers metrics on compact Lie groups. First, we give a method to construct left invariant non-Riemannian Einstein-Randers metrics on a compact Lie group, using the Zermelo navigation data. Then we prove that this gives a complete classification of left invariant Einstein-Randers metrics on compact simple Lie groups with the underlying Riemannian metric naturally reductive. Further, we completely determine the identity component of the group of isometries for this type of metrics on simple groups. Finally, we study some geometric properties of such metrics. In particular, we give the formulae of geodesics and flag curvature of such metrics.
引用
收藏
页码:870 / 881
页数:12
相关论文
共 50 条
  • [41] Survey on the BurnsideRing of compact lie groups
    Fausk, Halvard
    JOURNAL OF LIE THEORY, 2008, 18 (02) : 351 - 368
  • [42] Defining amalgams of compact Lie groups
    Gramlich, R
    JOURNAL OF LIE THEORY, 2006, 16 (01) : 1 - 18
  • [43] Jet invariants of compact Lie groups
    Perez Alvarez, Javier
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 57 (01) : 293 - 295
  • [44] Twisted Weyl Groups of Compact Lie Groups and Nonabelian Cohomology
    Liu, Ming
    Zhang, Xia
    MATHEMATICS, 2020, 8 (01)
  • [45] Central oscillating multipliers on compact Lie groups
    Jiecheng Chen
    Dashan Fan
    Mathematische Zeitschrift, 2011, 267 : 235 - 259
  • [46] Hofer's metric in compact Lie groups
    Larotonda, Gabriel
    Miglioli, Martin
    GROUPS GEOMETRY AND DYNAMICS, 2023, 17 (03) : 839 - 898
  • [47] Central oscillating multipliers on compact Lie groups
    Chen, Jiecheng
    Fan, Dashan
    MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (1-2) : 235 - 259
  • [48] Lp Fourier multipliers on compact Lie groups
    Ruzhansky, Michael
    Wirth, Jens
    MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (3-4) : 621 - 642
  • [49] Re-expansions on compact Lie groups
    Rauan Akylzhanov
    Elijah Liflyand
    Michael Ruzhansky
    Analysis and Mathematical Physics, 2020, 10
  • [50] Re-expansions on compact Lie groups
    Akylzhanov, Rauan
    Liflyand, Elijah
    Ruzhansky, Michael
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (03)