FUSION OF MULTISPECTRAL AND SAR IMAGES USING SPARSE REPRESENTATION

被引:4
作者
Zhang, Hai [1 ]
Shen, Huanfeng [1 ]
Zhang, Liangpei [2 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China
来源
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2016年
关键词
Image fusion; Synthetic Aperture Radar; sparse representation; simultaneous orthogonal matching pursuit; INTEGRATION; WAVELET;
D O I
10.1109/IGARSS.2016.7730878
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Complementary information from multi-sensor can be integrated to effectively solve many problems in remote sensing application. Synthetic Aperture Radar (SAR) imaging can be a feasible alternative to traditional optical remote sensing techniques because it is independent of solar illumination and weather conditions. This paper proposes a novel fusion framework combining IHS transform with sparse representation theory to fuse multispectral and SAR images. In addition, the simultaneous orthogonal matching pursuit (SOMP) technique is introduced to guarantee the efficiency. Experiments on various datasets have verified the effectiveness of proposed method.
引用
收藏
页码:7200 / 7203
页数:4
相关论文
共 50 条
[11]   Runway Detection in SAR Images Based on Fusion Sparse Representation and Semantic Spatial Matching [J].
Lv, Wentao ;
Dai, Kaiyan ;
Wu, Long ;
Yang, Xiaocheng ;
Xu, Weiqiang .
IEEE ACCESS, 2018, 6 :27984-27992
[12]   Fusion of SAR and Multispectral Images Using Random Forest Regression for Change Detection [J].
Seo, Dae Kyo ;
Kim, Yong Hyun ;
Eo, Yang Dam ;
Lee, Mi Hee ;
Park, Wan Yong .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (10)
[13]   Sparse Representation of Monogenic Signal: With Application to Target Recognition in SAR Images [J].
Dong, Ganggang ;
Wang, Na ;
Kuang, Gangyao .
IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (08) :952-956
[14]   Fusion of infrared and visible images combined with NSDTCT and sparse representation [J].
Yin M. ;
Duan P.-H. ;
Chu B. ;
Liang X.-Y. .
Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2016, 24 (07) :1763-1771
[15]   Infrared and visible images fusion by using sparse representation and guided filter [J].
Li, Qilei ;
Wu, Wei ;
Lu, Lu ;
Li, Zuoyong ;
Ahmad, Awais ;
Jeon, Gwanggil .
JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 24 (03) :254-263
[16]   Convolution Structure Sparse Coding for Fusion of Panchromatic and Multispectral Images [J].
Zhang, Kai ;
Wang, Min ;
Yang, Shuyuan ;
Jiao, Licheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02) :1117-1130
[17]   Sparse Regularization based Fusion Technique for Hyperspectral and Multispectral Images using Non-linear Mixing Model [J].
Augustine, Nishanth ;
George, Sudhish N. .
PROCEEDINGS ON 2018 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS), 2018, :56-63
[18]   Multispectral and hyperspectral image fusion with spatial-spectral sparse representation [J].
Dian, Renwei ;
Li, Shutao ;
Fang, Leyuan ;
Wei, Qi .
INFORMATION FUSION, 2019, 49 :262-270
[19]   Coupling Local–Nonlocal Feature Representation for SAR and Multispectral Image Fusion [J].
Zhu, Jiajia ;
Liang, Hongbo ;
Yang, Xuezhi ;
Yang, Xiangyu .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
[20]   Medical images fusion by using weighted least squares filter and sparse representation [J].
Jiang, Wei ;
Yang, Xiaomin ;
Wu, Wei ;
Liu, Kai ;
Ahmad, Awais ;
Sangaiah, Arun Kumar ;
Jeon, Gwanggil .
COMPUTERS & ELECTRICAL ENGINEERING, 2018, 67 :252-266