Single-image super-resolution via local learning

被引:89
|
作者
Tang, Yi [1 ]
Yan, Pingkun [1 ]
Yuan, Yuan [1 ]
Li, Xuelong [1 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPt IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Super-resolution; Local learning; Generalization; Reproducing kernel; Kernel ridge regression; Similarity;
D O I
10.1007/s13042-011-0011-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nearest neighbor-based algorithms are popular in example-based super-resolution from a single image. The core idea behind such algorithms is that similar images are close in the sense of distance measurement. However, it is well known in the field of machine learning and statistical learning theory that the generalization of the nearest neighbor-based estimation is poor, when complex or high dimensional data are considered. To improve the power of the nearest neighbor-based algorithms in single-image based super-resolution, a local learning method is proposed in this paper. Similar to the nearest neighbor-based algorithms, a local training set is generated according to the similarity between the training samples and a given test sample. For super-resolving the given test sample, a local regression function is learned on the local training set. The generalization of nearest neighbor-based algorithms can be enhanced by the process of local regression. Based on such an idea, we propose a novel local-learning-based algorithm, where kernel ridge regression algorithm is used in local regression for its well generalization. Some experimental results verify the effectiveness and efficiency of the local learning algorithm in single-image based super-resolution.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 50 条
  • [41] Region adaptive single-image super-resolution using wavelet transform
    Kwon, Oh-Jin
    Park, Je-Ho
    International Journal of Multimedia and Ubiquitous Engineering, 2014, 9 (12): : 249 - 258
  • [42] Blind Single-Image Super-Resolution Reconstruction Based on Motion Blur
    Qin, Fengqing
    Li, Zhong
    Zhu, Lihong
    You, Yingde
    Cao, Lilan
    ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 895 - 899
  • [43] REGULARIZED SINGLE-IMAGE SUPER-RESOLUTION BASED ON PROGRESSIVE GRADIENT ESTIMATION
    Yu, Lejun
    Wu, Xiaoyu
    Ge, Fengxiang
    Sun, Bo
    He, Jun
    Sablatnig, Robert
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1985 - 1989
  • [44] Single-Image Super-Resolution Using Sparsity Constraints and Non-Local Similarities at Multiple Resolution Scales
    Luong, Hiep Q.
    Ruzic, Tijana
    Pizurica, Aleksandra
    Philips, Wilfried
    OPTICS, PHOTONICS, AND DIGITAL TECHNOLOGIES FOR MULTIMEDIA APPLICATIONS, 2010, 7723
  • [45] SINGLE FACE IMAGE SUPER-RESOLUTION VIA SOLO DICTIONARY LEARNING
    Juefei-Xu, Felix
    Savvides, Marios
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2239 - 2243
  • [46] Single-image super-resolution using kernel recursive least squares
    Jesna Anver
    P. Abdulla
    Signal, Image and Video Processing, 2016, 10 : 1551 - 1558
  • [47] Single-Image Super-Resolution based on Regularization with Stationary Gradient Fidelity
    Yu, Lejun
    Cao, Siming
    He, Jun
    Sun, Bo
    Dai, Feng
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [48] Single-image super-resolution based on sparse kernel ridge regression
    Wu, Fanlu
    Wang, Xiangjun
    AOPC 2017: OPTICAL SENSING AND IMAGING TECHNOLOGY AND APPLICATIONS, 2017, 10462
  • [49] Dual-Path Large Kernel Learning and Its Applications in Single-Image Super-Resolution
    Su, Zhen
    Sun, Mang
    Jiang, He
    Ma, Xiang
    Zhang, Rui
    Lv, Chen
    Kou, Qiqi
    Cheng, Deqiang
    SENSORS, 2024, 24 (19)
  • [50] Image Super-Resolution via Local Self-Learning Manifold Approximation
    1600, Institute of Electrical and Electronics Engineers Inc., United States (21): : 1245 - 1249