Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis

被引:2
作者
McGown, Kevin J. [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2012年 / 24卷 / 02期
关键词
Cubic fields; Dirichlet characters; Galois fields; GRH; Norm-euclidean;
D O I
10.5802/jtnb.804
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminant Delta = 7(2), 9(2), 13(2), 19(2), 31(2), 37(2),43(2), 61(2), 67(2), 103(2), 109(2), 127(2), 157(2). A large part of the proof is in establishing the following more general result: Let K be a Galois number field of odd prime degree l and conductor f. Assume the GRH for sigma(K)(s). If 38(L - 1)(2)(log f)(6) log log f < f, then K is not norm-Euclidean.
引用
收藏
页码:425 / 445
页数:21
相关论文
共 18 条
[1]  
[Anonymous], P S DURH 1975
[2]  
BACH E, 1990, MATH COMPUT, V55, P355, DOI 10.1090/S0025-5718-1990-1023756-8
[3]  
Davenport H., 2000, Graduate Texts in Mathematics, V74
[4]   ON THE EUCLIDEAN NATURE OF 4 CYCLIC CUBIC FIELDS [J].
GODWIN, HJ ;
SMITH, JR .
MATHEMATICS OF COMPUTATION, 1993, 60 (201) :421-423
[5]  
HEILBRONN H, 1950, P CAMB PHILOS SOC, V46, P377
[6]   On the logarithmic derivatives of Dirichlet L-functions at s=1 [J].
Ihara, Yasutaka ;
Murty, V. Kumar ;
Shimura, Mahoro .
ACTA ARITHMETICA, 2009, 137 (03) :253-276
[7]   On the theory of strict zeta functions, which correspond to complex characters [J].
Landau, E .
MATHEMATISCHE ZEITSCHRIFT, 1919, 4 :152-162
[8]  
Lemmermeyer F., 1995, EXPO MATH, V13, P385
[9]  
MCGOWN K. J., INT J NUMBE IN PRESS
[10]  
MONTGOMERY HL, 1971, LECT NOTES MATH, V227