Convergence properties of algorithms for direct parametric estimation of linear models in dynamic PET

被引:15
|
作者
Tsoumpas, Charalampos [1 ]
Turkheimer, Federico [2 ]
Thielemans, Kris [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Hammersmith Imanet Ltd, GE Healthcare & Med Res Council, Ctr Clin Sci, London SW7 2AZ, England
[2] Imperial Coll London, Med Res Council Clin Sci Ctr, PET methodol grp, London, England
[3] Hammersmith Imanet Ltd, London, England
来源
2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11 | 2007年
关键词
PET; STIR; reconstruction; kinetic modeling; MLEM; SPS;
D O I
10.1109/NSSMIC.2007.4436771
中图分类号
O59 [应用物理学];
学科分类号
摘要
In dynamic PET studies, the time changing activity of the radiotracer is measured through multiple consecutive frames. Subsequently, voxel-wise application of the kinetic model is expected to estimate parametric images. In this work we investigate the convergence properties of direct reconstruction algorithms of parametric images in 3D PET for the case where the kinetic model is linear in its parameters. As direct reconstruction algorithms we use a modification of the PIR algorithm [1], corresponding to the MLEM formula for parametric images, and a transformed version of the Separable Paraboloid Surrogate (SPS) algorithm formula [2]. The directly reconstructed images are compared with indirectly generated parametric maps using filtered back projection where the kinetic parameters are estimated using the Patlak plot, a standard linear regression method for the estimation of irreversibly bound tracers. Results show that direct MLEM and SPS parametric reconstruction algorithms have remarkably slow convergence. This is explained by the high correlation of the kinetic parameters. The method has been implemented in STIR library (Software for Tomographic Image Reconstruction) [3].
引用
收藏
页码:3034 / +
页数:2
相关论文
共 50 条
  • [1] Direct Estimation of Kinetic Parametric Images for Dynamic PET
    Wang, Guobao
    Qi, Jinyi
    THERANOSTICS, 2013, 3 (10): : 802 - 815
  • [2] Study of direct and indirect parametric estimation methods of linear models in dynamic positron emission tomography
    Tsoumpas, Charalampos
    Turkheimer, Federico E.
    Thielemans, Kris
    MEDICAL PHYSICS, 2008, 35 (04) : 1299 - 1309
  • [3] Probabilistic Graphical Models for Dynamic PET: A Novel Approach to Direct Parametric Map Estimation and Image Reconstruction
    Scipioni, Michele
    Pedemonte, Stefano
    Santarelli, Maria Filomena
    Landini, Luigi
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (01) : 152 - 160
  • [4] Generalized Algorithms for Direct Reconstruction of Parametric Images From Dynamic PET Data
    Wang, Guobao
    Qi, Jinyi
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (11) : 1717 - 1726
  • [5] Dictionary Learning Constrained Direct Parametric Estimation in Dynamic Myocardial Perfusion PET
    Yang, Bao
    Wang, Xinhui
    Li, Andi
    Moody, Jonathan B.
    Tang, Jing
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) : 3485 - 3497
  • [6] Penalized Direct Estimation of Parametric Images in PET
    Kim, Kyungsang
    El Fakhri, Georges
    Li, Quanzheng
    2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2015,
  • [7] Penalized Direct Estimation of Parametric PET Image
    Kim, Kyungsang
    El Fakhri, Georges
    Li, Quanzheng
    JOURNAL OF NUCLEAR MEDICINE, 2016, 57
  • [8] Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data
    Jiao, Jieqing
    Bousse, Alexandre
    Thielemans, Kris
    Burgos, Ninon
    Weston, Philip S. J.
    Schott, Jonathan M.
    Atkinson, David
    Arridge, Simon R.
    Hutton, Brian F.
    Markiewicz, Pawel
    Ourselin, Sebastien
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (01) : 203 - 213
  • [9] Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET
    Wang, Guobao
    Qi, Jinyi
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 1031 - 1034
  • [10] A comparison between parallel algorithms for system parameter estimation in dynamic linear models
    Mantovan, P
    Pastore, A
    Tonellato, S
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 1999, 15 (04) : 369 - 378