INFERENCE OF GENE REGULATORY NETWORKS BY EXTENDED KALMAN FILTERING USING GENE EXPRESSION TIME SERIES DATA

被引:0
作者
Fouladi, Ramouna [1 ]
Fatemizadeh, Emad [1 ]
Arab, S. Shahriar
机构
[1] Sharif Univ Technol, Dept Elect Engn, Tehran, Iran
来源
BIOINFORMATICS: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOINFORMATICS MODELS, METHODS AND ALGORITHMS | 2012年
关键词
Gene expression; Extended Kalman filtering; Gene regulatory network modelling; BAYESIAN NETWORK; COMPOUND-MODE; ARACNE;
D O I
10.5220/0003754801500155
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper. the Extended Kalman Entering (EKF) approach has been used to infer gene regulatory networks using time-series gene expression data. Gene expression values are considered stochastic processes and the gene regulator!, network, a dynamical nonlinear stochastic model. Using these values and a modified Kalman filtering approach, the model's parameters and consequently the interactions amongst genes are predicted. In this paper, each gene-gene interaction is modeled usury a linear term, a nonlinear one, and a constant term. The linear and nonlinear term coefficients are included in the state vector together with the gene expressions' true values. Through the extended Kalman filtering process, these coefficients are updated in such a way trait the predicted gene expressions follow the ones observed. Finally, connections between each two genes are inferred based on these coefficients.
引用
收藏
页码:150 / 155
页数:6
相关论文
共 21 条
[1]  
[Anonymous], P PAC S BIOC
[2]   Inference of gene regulatory networks and compound mode of action from time course gene expression profiles [J].
Bansal, M ;
Della Gatta, G ;
di Bernardo, D .
BIOINFORMATICS, 2006, 22 (07) :815-822
[3]   A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches [J].
Cantone, Irene ;
Marucci, Lucia ;
Iorio, Francesco ;
Ricci, Maria Aurelia ;
Belcastro, Vincenzo ;
Bansal, Mukesh ;
Santini, Stefania ;
di Bernardo, Mario ;
di Bernardo, Diego ;
Cosma, Maria Pia .
CELL, 2009, 137 (01) :172-181
[4]   Modeling stochastic gene expression: Implications for haploinsufficiency [J].
Cook, DL ;
Gerber, LN ;
Tapscott, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15641-15646
[5]  
D'haeseleer P, 1999, Pac Symp Biocomput, P41
[6]   Inferring genetic networks and identifying compound mode of action via expression profiling [J].
Gardner, TS ;
di Bernardo, D ;
Lorenz, D ;
Collins, JJ .
SCIENCE, 2003, 301 (5629) :102-105
[7]  
Ghahramani Z, 1998, LECT NOTES ARTIF INT, V1387, P168, DOI 10.1007/BFb0053999
[8]  
HOLTER NS, 2001, P NATL ACAD SCI US
[9]   Model gene network by semi-fixed Bayesian network [J].
Liu, TF ;
Sung, WK ;
Mittal, A .
EXPERT SYSTEMS WITH APPLICATIONS, 2006, 30 (01) :42-49
[10]   ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context [J].
Margolin, AA ;
Nemenman, I ;
Basso, K ;
Wiggins, C ;
Stolovitzky, G ;
Dalla Favera, R ;
Califano, A .
BMC BIOINFORMATICS, 2006, 7 (Suppl 1)