On the Weak Solvability of a Fractional Viscoelasticity Model

被引:3
作者
Zvyagin, V. G. [1 ]
Orlov, V. P. [1 ]
机构
[1] Voronezh State Univ, Voronezh 394006, Russia
关键词
D O I
10.1134/S1064562418070104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of a weak solution of a boundary value problem for a fractional viscoelasticity model that is a fractional analogue of the anti-Zener model with memory along trajectories of motion is proved. The rheological equation of the given model involves fractional-order derivatives. The proof relies on an approximation of the original problem by a sequence of regularized ones and on the theory of regular Lagrangian flows.
引用
收藏
页码:568 / 570
页数:3
相关论文
共 12 条
[1]  
[Anonymous], 1993, INTEGRALS DERIVATIVE
[3]   Estimates and regularity results for the DiPerna-Lions flow [J].
Crippa, Gianluca ;
De Lellis, Camillo .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 616 :15-46
[4]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[5]  
Gyarmati I., 1970, Non-Equilibrium Thermodynamics-Field Theory and Variational Principles
[6]   Creep, relaxation and viscosity properties for basic fractional models in rheology [J].
Mainardi, F. ;
Spada, G. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01) :133-160
[7]   Weak solvability of the generalized Voigt viscoelasticity model [J].
Orlov, V. P. ;
Rode, D. A. ;
Pliev, M. A. .
SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (05) :859-874
[8]   Solvability of one non-Newtonian fluid dynamics model with memory [J].
Zvyagin, V. G. ;
Orlov, V. P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 172 :73-98
[9]   Weak solvability of a fractional Voigt viscoelasticity model [J].
Zvyagin, V. G. ;
Orlov, V. P. .
DOKLADY MATHEMATICS, 2017, 96 (02) :491-493
[10]  
Zvyagin V. G., 2004, APPROXIMATIVE TOPOLO