A Preconditioned Fast Finite Volume Method for Distributed-Order Diffusion Equation and Applications

被引:4
|
作者
Fu, Hongfei [1 ]
Liu, Huan [2 ]
Zheng, Xiangcheng [3 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Distributed-order diffusion equation; finite volume method; fast conjugate gradient method; circulant preconditioner; parameter identification; DIFFERENCE METHOD; CIRCULANT PRECONDITIONER; APPROXIMATIONS; SYSTEMS; SCHEME; MODEL;
D O I
10.4208/eajam.160418.190518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Crank-Nicolson finite volume scheme for the modeling of the Riesz space distributed-order diffusion equation is proposed. The corresponding linear system has a symmetric positive definite Toeplitz matrix. It can be efficiently stored in O(NK) memory. Moreover, for the finite volume scheme, a fast version of conjugate gradient (FCG) method is developed. Compared with the Gaussian elimination method, the computational complexity is reduced from O(MN3 + NK) to O(l(A) MN logN + NK), where l(A) is the average number of iterations at a time level. Further reduction of the computational cost is achieved due to use of a circulant preconditioner. The preconditioned fast finite volume method is combined with the Levenberg-Marquardt method to identify the free parameters of a distribution function. Numerical experiments show the efficiency of the method.
引用
收藏
页码:28 / 44
页数:17
相关论文
共 50 条