A Preconditioned Fast Finite Volume Method for Distributed-Order Diffusion Equation and Applications

被引:4
|
作者
Fu, Hongfei [1 ]
Liu, Huan [2 ]
Zheng, Xiangcheng [3 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Distributed-order diffusion equation; finite volume method; fast conjugate gradient method; circulant preconditioner; parameter identification; DIFFERENCE METHOD; CIRCULANT PRECONDITIONER; APPROXIMATIONS; SYSTEMS; SCHEME; MODEL;
D O I
10.4208/eajam.160418.190518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Crank-Nicolson finite volume scheme for the modeling of the Riesz space distributed-order diffusion equation is proposed. The corresponding linear system has a symmetric positive definite Toeplitz matrix. It can be efficiently stored in O(NK) memory. Moreover, for the finite volume scheme, a fast version of conjugate gradient (FCG) method is developed. Compared with the Gaussian elimination method, the computational complexity is reduced from O(MN3 + NK) to O(l(A) MN logN + NK), where l(A) is the average number of iterations at a time level. Further reduction of the computational cost is achieved due to use of a circulant preconditioner. The preconditioned fast finite volume method is combined with the Levenberg-Marquardt method to identify the free parameters of a distribution function. Numerical experiments show the efficiency of the method.
引用
收藏
页码:28 / 44
页数:17
相关论文
共 50 条
  • [31] A block-centred finite difference method for the distributed-order differential equation with Neumann boundary condition
    Li, Xiaoli
    Rui, Hongxing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) : 622 - 639
  • [32] Numerical discretization and fast approximation of a variably distributed-order fractional wave equation
    Jia, Jinhong
    Zheng, Xiangcheng
    Wang, Hong
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (05) : 2211 - 2232
  • [33] A distributed-order fractional diffusion equation with a singular density function: Analysis and approximation
    Yang, Zhiwei
    Wang, Hong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9819 - 9833
  • [34] A variably distributed-order time-fractional diffusion equation: Analysis and approximation
    Yang, Zhiwei
    Zheng, Xiangcheng
    Wang, Hong
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 367
  • [35] Fractional diffusion equation with distributed-order material derivative. Stochastic foundations
    Magdziarz, M.
    Teuerle, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (18)
  • [36] Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations
    Atanackovic, Teodor M.
    Pilipovic, Stevan
    Zorica, Dusan
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106): : 1893 - 1917
  • [37] A fast difference scheme on a graded mesh for time-fractional and space distributed-order diffusion equation with nonsmooth data
    Fardi, Mojtaba
    Khan, Yasir
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (15):
  • [38] A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation
    Hou, Yaxin
    Wen, Cao
    Liu, Yang
    Li, Hong
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (02) : 855 - 876
  • [39] Distributed-order relaxation-oscillation equation
    Rodrigues, M. M.
    Ferreira, M.
    Vieira, N.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [40] An efficient numerical method for the distributed-order time-fractional diffusion equation with the error analysis and stability properties
    Irandoust-Pakchin, Safar
    Hossein Derakhshan, Mohammad
    Rezapour, Shahram
    Adel, Mohamed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (03) : 2743 - 2765