A Preconditioned Fast Finite Volume Method for Distributed-Order Diffusion Equation and Applications

被引:4
|
作者
Fu, Hongfei [1 ]
Liu, Huan [2 ]
Zheng, Xiangcheng [3 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Distributed-order diffusion equation; finite volume method; fast conjugate gradient method; circulant preconditioner; parameter identification; DIFFERENCE METHOD; CIRCULANT PRECONDITIONER; APPROXIMATIONS; SYSTEMS; SCHEME; MODEL;
D O I
10.4208/eajam.160418.190518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Crank-Nicolson finite volume scheme for the modeling of the Riesz space distributed-order diffusion equation is proposed. The corresponding linear system has a symmetric positive definite Toeplitz matrix. It can be efficiently stored in O(NK) memory. Moreover, for the finite volume scheme, a fast version of conjugate gradient (FCG) method is developed. Compared with the Gaussian elimination method, the computational complexity is reduced from O(MN3 + NK) to O(l(A) MN logN + NK), where l(A) is the average number of iterations at a time level. Further reduction of the computational cost is achieved due to use of a circulant preconditioner. The preconditioned fast finite volume method is combined with the Levenberg-Marquardt method to identify the free parameters of a distribution function. Numerical experiments show the efficiency of the method.
引用
收藏
页码:28 / 44
页数:17
相关论文
共 50 条
  • [21] High-Order Numerical Method for Solving a Space Distributed-Order Time-Fractional Diffusion Equation
    Jing Li
    Yingying Yang
    Yingjun Jiang
    Libo Feng
    Boling Guo
    Acta Mathematica Scientia, 2021, 41 : 801 - 826
  • [22] Inverse source problem for a distributed-order time fractional diffusion equation
    Cheng, Xiaoliang
    Yuan, Lele
    Liang, Kewei
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (01): : 17 - 32
  • [23] Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations
    Weiping Bu
    Aiguo Xiao
    Wei Zeng
    Journal of Scientific Computing, 2017, 72 : 422 - 441
  • [24] Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations
    Bu, Weiping
    Xiao, Aiguo
    Zeng, Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (01) : 422 - 441
  • [25] Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model
    Cao Wen
    Yang Liu
    Baoli Yin
    Hong Li
    Jinfeng Wang
    Numerical Algorithms, 2021, 88 : 523 - 553
  • [26] Finite difference method for the Riesz space distributed-order advection-diffusion equation with delay in 2D: convergence and stability
    Heris, Mahdi Saedshoar
    Javidi, Mohammad
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (12): : 16887 - 16917
  • [27] Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model
    Wen, Cao
    Liu, Yang
    Yin, Baoli
    Li, Hong
    Wang, Jinfeng
    NUMERICAL ALGORITHMS, 2021, 88 (02) : 523 - 553
  • [28] An ?-robust fast algorithm for distributed-order time-space fractional diffusion equation with weakly singular solution
    Sun, Lu-Yao
    Lei, Siu-Long
    Sun, Hai-Wei
    Zhang, Jia-Li
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 207 : 437 - 452
  • [29] A Fully Discrete LDG Method for the Distributed-Order Time-Fractional Reaction-Diffusion Equation
    Wei, Leilei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (03) : 979 - 994
  • [30] Space-time finite element method for the distributed-order time fractional reaction diffusion equations
    Bu, Weiping
    Ji, Lun
    Tang, Yifa
    Zhou, Jie
    APPLIED NUMERICAL MATHEMATICS, 2020, 152 : 446 - 465