A Preconditioned Fast Finite Volume Method for Distributed-Order Diffusion Equation and Applications

被引:4
作者
Fu, Hongfei [1 ]
Liu, Huan [2 ]
Zheng, Xiangcheng [3 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Distributed-order diffusion equation; finite volume method; fast conjugate gradient method; circulant preconditioner; parameter identification; DIFFERENCE METHOD; CIRCULANT PRECONDITIONER; APPROXIMATIONS; SYSTEMS; SCHEME; MODEL;
D O I
10.4208/eajam.160418.190518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Crank-Nicolson finite volume scheme for the modeling of the Riesz space distributed-order diffusion equation is proposed. The corresponding linear system has a symmetric positive definite Toeplitz matrix. It can be efficiently stored in O(NK) memory. Moreover, for the finite volume scheme, a fast version of conjugate gradient (FCG) method is developed. Compared with the Gaussian elimination method, the computational complexity is reduced from O(MN3 + NK) to O(l(A) MN logN + NK), where l(A) is the average number of iterations at a time level. Further reduction of the computational cost is achieved due to use of a circulant preconditioner. The preconditioned fast finite volume method is combined with the Levenberg-Marquardt method to identify the free parameters of a distribution function. Numerical experiments show the efficiency of the method.
引用
收藏
页码:28 / 44
页数:17
相关论文
共 46 条
[2]  
Barrett R., 1994, TEMPLATES SOLUTION L, DOI DOI 10.1137/1.9781611971538
[3]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[4]   Conjugate gradient methods for toeplitz systems [J].
Chan, RH ;
Ng, MK .
SIAM REVIEW, 1996, 38 (03) :427-482
[5]   AN OPTIMAL CIRCULANT PRECONDITIONER FOR TOEPLITZ-SYSTEMS [J].
CHAN, TF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :766-771
[6]   FAST FINITE DIFFERENCE APPROXIMATION FOR IDENTIFYING PARAMETERS IN A TWO-DIMENSIONAL SPACE-FRACTIONAL NONLOCAL MODEL WITH VARIABLE DIFFUSIVITY COEFFICIENTS [J].
Chen, S. ;
Liu, F. ;
Jiang, X. ;
Turner, I. ;
Burrage, K. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) :606-624
[7]   Fractional diffusion in plasma turbulence [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICS OF PLASMAS, 2004, 11 (08) :3854-3864
[8]   Lubich Second-Order Methods for Distributed-Order Time-Fractional Differential Equations with Smooth Solutions [J].
Du, Rui ;
Hao, Zhao-peng ;
Sun, Zhi-zhong .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2016, 6 (02) :131-151
[9]   Variational formulation for the stationary fractional advection dispersion equation [J].
Ervin, VJ ;
Roop, JP .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (03) :558-576
[10]   Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation [J].
Feng, L. B. ;
Zhuang, P. ;
Liu, F. ;
Turner, I. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :52-65