A Preconditioned Fast Finite Volume Method for Distributed-Order Diffusion Equation and Applications

被引:4
|
作者
Fu, Hongfei [1 ]
Liu, Huan [2 ]
Zheng, Xiangcheng [3 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Distributed-order diffusion equation; finite volume method; fast conjugate gradient method; circulant preconditioner; parameter identification; DIFFERENCE METHOD; CIRCULANT PRECONDITIONER; APPROXIMATIONS; SYSTEMS; SCHEME; MODEL;
D O I
10.4208/eajam.160418.190518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Crank-Nicolson finite volume scheme for the modeling of the Riesz space distributed-order diffusion equation is proposed. The corresponding linear system has a symmetric positive definite Toeplitz matrix. It can be efficiently stored in O(NK) memory. Moreover, for the finite volume scheme, a fast version of conjugate gradient (FCG) method is developed. Compared with the Gaussian elimination method, the computational complexity is reduced from O(MN3 + NK) to O(l(A) MN logN + NK), where l(A) is the average number of iterations at a time level. Further reduction of the computational cost is achieved due to use of a circulant preconditioner. The preconditioned fast finite volume method is combined with the Levenberg-Marquardt method to identify the free parameters of a distribution function. Numerical experiments show the efficiency of the method.
引用
收藏
页码:28 / 44
页数:17
相关论文
共 50 条
  • [1] A novel finite volume method for the Riesz space distributed-order diffusion equation
    Li, J.
    Liu, F.
    Feng, L.
    Turner, I.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) : 772 - 783
  • [2] Fast and efficient finite difference method for the distributed-order diffusion equation based on the staggered grids
    Zhao, Xuan
    Li, Xiaoli
    Li, Ziyan
    APPLIED NUMERICAL MATHEMATICS, 2022, 174 : 34 - 45
  • [3] A novel finite volume method for the Riesz space distributed-order advection-diffusion equation
    Li, J.
    Liu, F.
    Feng, L.
    Turner, I.
    APPLIED MATHEMATICAL MODELLING, 2017, 46 : 536 - 553
  • [4] A novel finite volume method for the nonlinear two-sided space distributed-order diffusion equation with variable coefficients
    Yang, Shuiping
    Liu, Fawang
    Feng, Libo
    Turner, Ian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 388
  • [5] A Galerkin finite element method for the modified distributed-order anomalous sub-diffusion equation
    Li, Lang
    Liu, Fawang
    Feng, Libo
    Turner, Ian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368
  • [6] A fast finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction-diffusion equation
    Zhang, Yaping
    Cao, Jiliang
    Bu, Weiping
    Xiao, Aiguo
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2020, 11 (02)
  • [7] FRACTIONAL DIFFUSION EQUATION WITH DISTRIBUTED-ORDER CAPUTO DERIVATIVE
    Kubica, Adam
    Ryszewska, Katarzyna
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2019, 31 (02) : 195 - 243
  • [8] A Legendre spectral-finite difference method for Caputo–Fabrizio time-fractional distributed-order diffusion equation
    M. Fardi
    J. Alidousti
    Mathematical Sciences, 2022, 16 : 417 - 430
  • [9] An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions
    Zheng, Xiangcheng
    Liu, Huan
    Wang, Hong
    Fu, Hongfei
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1395 - 1418
  • [10] An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions
    Xiangcheng Zheng
    Huan Liu
    Hong Wang
    Hongfei Fu
    Journal of Scientific Computing, 2019, 80 : 1395 - 1418