GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code

被引:19
作者
E, J. C. [1 ]
Wang, L. [2 ]
Chen, S. [1 ]
Zhang, Y. Y. [1 ]
Luo, S. N. [1 ,3 ]
机构
[1] Peac Inst Multiscale Sci, Chengdu 610031, Sichuan, Peoples R China
[2] Hunan Agr Univ, Coll Sci, Changsha 410128, Hunan, Peoples R China
[3] Southwest Jiaotong Univ, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Sichuan, Peoples R China
来源
JOURNAL OF SYNCHROTRON RADIATION | 2018年 / 25卷
基金
中国国家自然科学基金;
关键词
diffraction simulation; reciprocal space mapping; polychromatic beam; parallel computing; X-RAY-DIFFRACTION; SCATTERING FACTORS; TWIST BOUNDARY; GRAIN-SIZE; DEFORMATION; GOLD;
D O I
10.1107/S1600577517016733
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
GAPD, a graphics-processing-unit (GPU)-accelerated atom-based polychromatic diffraction simulation code for direct, kinematics-based, simulations of X-ray/electron diffraction of large-scale atomic systems with mono-/polychromatic beams and arbitrary plane detector geometries, is presented. This code implements GPU parallel computation via both real-and reciprocal-space decompositions. With GAPD, direct simulations are performed of the reciprocal lattice node of ultralarge systems (similar to 5 billion atoms) and diffraction patterns of single-crystal and polycrystalline configurations with mono-and polychromatic X-ray beams (including synchrotron undulator sources), and validation, benchmark and application cases are presented.
引用
收藏
页码:604 / 611
页数:8
相关论文
共 40 条
  • [31] Tamura N., 2014, Strain and dislocation gradients from diffraction, P125, DOI [DOI 10.1142/9781908979636_FMATTER, DOI 10.1142/9781908979636_0004, 10.1142/9781908979636_0004]
  • [32] Real-time microstructure of shocked LiF crystals: Use of synchrotron x-rays
    Turneaure, Stefan J.
    Gupta, Y. M.
    Zimmerman, K.
    Perkins, K.
    Yoo, C. S.
    Shen, G.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 105 (05)
  • [33] Dislocation densities, arrangements and character from X-ray diffraction experiments
    Ungár, T
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 309 : 14 - 22
  • [34] Coherence Properties of Individual Femtosecond Pulses of an X-Ray Free-Electron Laser
    Vartanyants, I. A.
    Singer, A.
    Mancuso, A. P.
    Yefanov, O. M.
    Sakdinawat, A.
    Liu, Y.
    Bang, E.
    Williams, G. J.
    Cadenazzi, G.
    Abbey, B.
    Sinn, H.
    Attwood, D.
    Nugent, K. A.
    Weckert, E.
    Wang, T.
    Zhu, D.
    Wu, B.
    Graves, C.
    Scherz, A.
    Turner, J. J.
    Schlotter, W. F.
    Messerschmidt, M.
    Luening, J.
    Acremann, Y.
    Heimann, P.
    Mancini, D. C.
    Joshi, V.
    Krzywinski, J.
    Soufli, R.
    Fernandez-Perea, M.
    Hau-Riege, S.
    Peele, A. G.
    Feng, Y.
    Krupin, O.
    Moeller, S.
    Wurth, W.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (14)
  • [35] Vartanyants I. A., 2016, SYNCHROTRON LIGHT SO, P821
  • [36] Partial coherence effects on the imaging of small crystals using coherent x-ray diffraction
    Vartanyants, IA
    Robinson, IK
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (47) : 10593 - 10611
  • [37] Shock-induced deformation of nanocrystalline Al: Characterization with orientation mapping and selected area electron diffraction
    Wang, L.
    E, J. C.
    Cai, Y.
    Zhao, F.
    Fan, D.
    Luo, S. N.
    [J]. JOURNAL OF APPLIED PHYSICS, 2015, 117 (08)
  • [38] Wang L., 2015, J CHEM PHYS, V142
  • [39] Warren BE., 1969, X-ray diffraction
  • [40] Williams D.B., 1996, TRANSMISSION ELECT M, P299