GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code

被引:19
作者
E, J. C. [1 ]
Wang, L. [2 ]
Chen, S. [1 ]
Zhang, Y. Y. [1 ]
Luo, S. N. [1 ,3 ]
机构
[1] Peac Inst Multiscale Sci, Chengdu 610031, Sichuan, Peoples R China
[2] Hunan Agr Univ, Coll Sci, Changsha 410128, Hunan, Peoples R China
[3] Southwest Jiaotong Univ, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Sichuan, Peoples R China
来源
JOURNAL OF SYNCHROTRON RADIATION | 2018年 / 25卷
基金
中国国家自然科学基金;
关键词
diffraction simulation; reciprocal space mapping; polychromatic beam; parallel computing; X-RAY-DIFFRACTION; SCATTERING FACTORS; TWIST BOUNDARY; GRAIN-SIZE; DEFORMATION; GOLD;
D O I
10.1107/S1600577517016733
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
GAPD, a graphics-processing-unit (GPU)-accelerated atom-based polychromatic diffraction simulation code for direct, kinematics-based, simulations of X-ray/electron diffraction of large-scale atomic systems with mono-/polychromatic beams and arbitrary plane detector geometries, is presented. This code implements GPU parallel computation via both real-and reciprocal-space decompositions. With GAPD, direct simulations are performed of the reciprocal lattice node of ultralarge systems (similar to 5 billion atoms) and diffraction patterns of single-crystal and polycrystalline configurations with mono-and polychromatic X-ray beams (including synchrotron undulator sources), and validation, benchmark and application cases are presented.
引用
收藏
页码:604 / 611
页数:8
相关论文
共 40 条
  • [1] Barabash R., 2014, Strain and Dislocation Gradients From Diffraction: Spatially- Resolved Local Structure and Defects
  • [2] Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations
    Brandstetter, S.
    Derlet, P. M.
    Van Petegem, S.
    Van Swygenhoven, H.
    [J]. ACTA MATERIALIA, 2008, 56 (02) : 165 - 176
  • [3] Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa
    Briggs, R.
    Gorman, M. G.
    Coleman, A. L.
    McWilliams, R. S.
    McBride, E. E.
    McGonegle, D.
    Wark, J. S.
    Peacock, L.
    Rothman, S.
    Macleod, S. G.
    Bolme, C. A.
    Gleason, A. E.
    Collins, G. W.
    Eggert, J. H.
    Fratanduono, D. E.
    Smith, R. F.
    Galtier, E.
    Granados, E.
    Lee, H. J.
    Nagler, B.
    Nam, I.
    Xing, Z.
    McMahon, M. I.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (02)
  • [4] THE ATOMIC-STRUCTURE OF A LARGE-ANGLE [001] TWIST BOUNDARY IN GOLD DETERMINED BY A JOINT COMPUTER MODELING AND X-RAY-DIFFRACTION STUDY
    BRISTOWE, PD
    SASS, SL
    [J]. ACTA METALLURGICA, 1980, 28 (05): : 575 - 588
  • [5] THE PROJECTED ATOMIC-STRUCTURE OF A LARGE-ANGLE [001] SIGMA = 5 (THETA = 36.9-DEGREES) TWIST BOUNDARY IN GOLD - DIFFRACTION ANALYSIS AND THEORETICAL PREDICTIONS
    BUDAI, J
    BRISTOWE, PD
    SASS, SL
    [J]. ACTA METALLURGICA, 1983, 31 (05): : 699 - 712
  • [6] Plastic deformation with reversible peak broadening in nanocrystalline nickel
    Budrovic, Z
    Van Swygenhoven, H
    Derlet, PM
    Van Petegem, S
    Schmitt, B
    [J]. SCIENCE, 2004, 304 (5668) : 273 - 276
  • [7] SLADS: a parallel code for direct simulations of scattering of large anisotropic dense nanoparticle systems
    Chen, Sen
    E, Juncheng
    Luo, Sheng-Nian
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2017, 50 : 951 - 958
  • [8] Virtual diffraction analysis of Ni [010] symmetric tilt grain boundaries
    Coleman, S. P.
    Spearot, D. E.
    Capolungo, L.
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (05)
  • [9] A Computational Algorithm to Produce Virtual X-ray and Electron Diffraction Patterns from Atomistic Simulations
    Coleman, Shawn P.
    Sichani, Mehrdad M.
    Spearot, Douglas E.
    [J]. JOM, 2014, 66 (03) : 408 - 416
  • [10] Calculation of x-ray spectra for nanocrystalline materials
    Derlet, PM
    Van Petegem, S
    Van Swygenhoven, H
    [J]. PHYSICAL REVIEW B, 2005, 71 (02)