Lagrangian coherent structures and plasma transport processes

被引:17
作者
Falessi, M. V. [1 ]
Pegoraro, F. [2 ]
Schep, T. J. [3 ]
机构
[1] Univ Rome Tre, Dipartimento Matemat & Fis, I-00199 Rome, Italy
[2] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[3] Eindhoven Univ Technol, Dept Phys, NL-5612 AP Eindhoven, Netherlands
关键词
DIFFUSION; PARTICLES; TOKAMAK;
D O I
10.1017/S0022377815000690
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A dynamical system framework is used to describe transport processes in plasmas embedded in a magnetic field. For periodic systems with one degree of freedom, the Poincare map provides a splitting of the phase space into regions where particles have different kinds of motion: periodic, quasi-periodic or chaotic. The boundaries of these regions are transport barriers, i.e. a trajectory cannot cross such boundaries throughout the evolution of the system. Lagrangian coherent structures generalize this method to systems with the most general time dependence, splitting the phase space into regions with different qualitative behaviours. This leads to the definition of finite-time transport barriers, i.e. trajectories cannot cross the barrier for a finite amount of time. This methodology can be used to identify fast recirculating regions in the dynamical system and to characterize the transport between them.
引用
收藏
页数:15
相关论文
共 28 条
  • [1] Forced magnetic field line reconnection in electron magnetohydrodynamics
    Avinash, K
    Bulanov, SV
    Esirkepov, T
    Kaw, P
    Pegoraro, F
    Sasorov, PV
    Sen, A
    [J]. PHYSICS OF PLASMAS, 1998, 5 (08) : 2849 - 2860
  • [2] Electrostatic turbulence and transport with stochastic magnetic field lines
    Beyer, P
    Garbet, X
    Benkadda, S
    Ghendrih, P
    Sarazin, Y
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (10) : 2167 - 2184
  • [3] Aspects of three-dimensional magnetic reconnection
    Borgogno, D
    Grasso, D
    Porcelli, F
    Califano, F
    Pegoraro, F
    Farina, D
    [J]. PHYSICS OF PLASMAS, 2005, 12 (03) : 1 - 15
  • [4] Borgogno D, 2011, PHYS PLASMAS, V18, DOI [10.1063/1.3647339, 10.1063/1.3647330]
  • [5] Borgogno D, 2011, PHYS PLASMAS, V18, DOI [10.1063/1.3647330, 10.1063/1.3647339]
  • [6] Stable and unstable invariant manifolds in a partially chaotic magnetic configuration generated by nonlinear reconnection
    Borgogno, D.
    Grasso, D.
    Pegoraro, F.
    Schep, T. J.
    [J]. PHYSICS OF PLASMAS, 2008, 15 (10)
  • [7] Nonlinear physics and energetic particle transport features of the beam-plasma instability
    Carlevaro, Nakia
    Falessi, Matteo V.
    Montani, Giovanni
    Zonca, Fulvio
    [J]. JOURNAL OF PLASMA PHYSICS, 2015, 81
  • [8] DETECTION OF COHERENT STRUCTURES IN PHOTOSPHERIC TURBULENT FLOWS
    Chian, Abraham C. -L.
    Rempel, Erico L.
    Aulanier, Guillaume
    Schmieder, Brigitte
    Shadden, Shawn C.
    Welsch, Brian T.
    Yeates, Anthony R.
    [J]. ASTROPHYSICAL JOURNAL, 2014, 786 (01)
  • [9] DIFFUSION OF CHARGED-PARTICLES IN TOKAMAK-LIKE STOCHASTIC MAGNETIC AND ELECTRIC-FIELDS
    CORONADO, M
    VITELA, J
    AKCASU, AZ
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (12): : 3935 - 3951
  • [10] Optimal pollution mitigation in monterey bay based on coastal radar data and nonlinear dynamics
    Coulliette, Chad
    Lekien, Francois
    Paduan, Jeffrey D.
    Haller, George
    Marsden, Jerrold E.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (18) : 6562 - 6572