Identities and congruences for the general partition and Ramanujan's tau functions

被引:21
作者
Baruah, Nayandeep Deka [1 ]
Sarmah, Bipul Kumar [2 ]
机构
[1] Tezpur Univ, Dept Math Sci, Sonitpur 784028, Assam, India
[2] Tezpur Univ, Dept Math Sci, Sonitpur 784028, Assam, India
关键词
Partition; partition congruences; Rogers-Ramanujan continued fraction; Ramanujan's theta function; POWERS;
D O I
10.1007/s13226-013-0034-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some identities and congruences for the general partition function p (r) (n). In particular, we deduce some known identities for Ramanujan's tau function and find simple proofs of Ramanujan's famous partition congruences for modulo 5 and 7. Our emphasis throughout this paper is to exhibit the use of Ramanujan's theta functions to generate identities and congruences for general partition function.
引用
收藏
页码:643 / 671
页数:29
相关论文
共 27 条
[1]  
[Anonymous], P CAMBRIDGE PHILOS
[2]   RAMANUJAN CONGRUENCES FOR P-K(N) [J].
ATKIN, AOL .
CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (01) :67-&
[3]   SOME CONGRUENCES DEDUCIBLE FROM RAMANUJAN'S CUBIC CONTINUED FRACTION [J].
Baruah, Nayandeep Deka ;
Ojah, Kanan Kumari .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (05) :1331-1343
[4]  
Berndt B., 1994, RAMANUJANS NOTEBOO 4
[5]  
Berndt B. C., 1991, Ramanujan's Notebooks
[6]  
Berndt B. C., 2011, PARTITIONS Q SERIES, P13
[7]   Theorems on partitions from a page in Ramanujan's lost notebook [J].
Berndt, BC ;
Yee, AJ ;
Yi, JH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 160 (1-2) :53-68
[8]  
Berndt BC, 2001, ANDREWS FESTSCHRIFT: SEVENTEEN PAPER ON CLASSICAL NUMBER THEORY AND COMBINATORICS, P39
[9]   Exceptional congruences for powers of the partition function [J].
Boylan, M .
ACTA ARITHMETICA, 2004, 111 (02) :187-203
[10]  
Farkas H. M., 1999, CONT MATH, V240, P131