Dissociation of the recombination control and the sequence-specific transactivation function of P53

被引:75
作者
Dudenhöffer, C [1 ]
Kurth, M [1 ]
Janus, F [1 ]
Deppert, W [1 ]
Wiesmüller, L [1 ]
机构
[1] Univ Hamburg, Dept Dermatol, Heinrich Pette Inst Expt Virol & Immunol, D-20251 Hamburg, Germany
关键词
genetic stability; homologous recombination; mismatch recognition; p53; C-terminus; MDM2;
D O I
10.1038/sj.onc.1202964
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, we described a new biological function of p53 in inhibiting recombination processes when encountering mismatches in heteroduplexes (Dudenhoffer et al,, 1998). Here, we characterized protein domains of p53 participating in this process by in vitro analysis of mutated p53 proteins, and by applying our SV40-based assay system on monkey cells, which express different p53 variants. We present evidence that both binding of artificial recombination intermediates and p53-dependent recombination control require an intact p53 core and the oligomerization domain, strongly suggesting that the recognition of DNA undergoing recombination represents an essential step of this genomic surveillance mechanism, Further analyses indicated a role of the C-terminus in negatively regulating recombination control, an effect which can be neutralized by concurrent mismatch recognition. p53 lacking the oligomerization domain totally lost its ability to suppress homologous recombination. The cancer-related mutant p53(273H) was also significantly defective in this function, although we observed only twofold reductions in the corresponding transactivation activities on p53-response elements in episomal constructs. HDM2, an inhibitor of p53's transcriptional and growth regulatory activities, interfered with the inhibition of DNA exchange processes by p53 only weakly, Thus, functions of p53 in recombination control can be structurally dissociated from p53-dependent transcriptional transactivation.
引用
收藏
页码:5773 / 5784
页数:12
相关论文
共 82 条
[1]  
Albor A, 1998, CANCER RES, V58, P2091
[2]   P53 BINDS SINGLE-STRANDED-DNA ENDS AND CATALYZES DNA RENATURATION AND STRAND TRANSFER [J].
BAKALKIN, G ;
YAKOVLEVA, T ;
SELIVANOVA, G ;
MAGNUSSON, KP ;
SZEKELY, L ;
KISELEVA, E ;
KLEIN, G ;
TERENIUS, L ;
WIMAN, KG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (01) :413-417
[3]   4 P53 DNA-BINDING DOMAIN PEPTIDES BIND NATURAL P53-RESPONSE ELEMENTS AND BEND THE DNA [J].
BALAGURUMOORTHY, P ;
SAKAMOTO, H ;
LEWIS, MS ;
ZAMBRANO, N ;
CLORE, GM ;
GRONENBORN, AM ;
APPELLA, E ;
HARRINGTON, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) :8591-8595
[4]   A PROTEOLYTIC FRAGMENT FROM THE CENTRAL REGION OF P53 HAS MARKED SEQUENCE-SPECIFIC DNA-BINDING ACTIVITY WHEN GENERATED FROM WILD-TYPE BUT NOT FROM ONCOGENIC MUTANT P53-PROTEIN [J].
BARGONETTI, J ;
MANFREDI, JJ ;
CHEN, XB ;
MARSHAK, DR ;
PRIVES, C .
GENES & DEVELOPMENT, 1993, 7 (12B) :2565-2574
[5]   Atm selectively regulates distinct p53-dependent cell-cycle checkpoint and apoptotic pathways [J].
Barlow, C ;
Brown, KD ;
Deng, CX ;
Tagle, DA ;
WynshawBoris, A .
NATURE GENETICS, 1997, 17 (04) :453-456
[6]   THE CARBOXYL-TERMINAL DOMAIN OF THE P53 PROTEIN REGULATES SEQUENCE-SPECIFIC DNA-BINDING THROUGH ITS NONSPECIFIC NUCLEIC ACID-BINDING ACTIVITY [J].
BAYLE, JH ;
ELENBAAS, B ;
LEVINE, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (12) :5729-5733
[7]   Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein [J].
Bertrand, P ;
Rouillard, D ;
Boulet, A ;
Levalois, C ;
Soussi, T ;
Lopez, BS .
ONCOGENE, 1997, 14 (09) :1117-1122
[8]  
BRAIN R, 1994, ONCOGENE, V9, P1775
[9]   A SELECTIVE TRANSCRIPTIONAL INDUCTION SYSTEM FOR MAMMALIAN-CELLS BASED ON GA14-ESTROGEN RECEPTOR FUSION PROTEINS [J].
BRASELMANN, S ;
GRANINGER, P ;
BUSSLINGER, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (05) :1657-1661
[10]   The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis [J].
Brown, DR ;
Thomas, CA ;
Deb, SP .
EMBO JOURNAL, 1998, 17 (09) :2513-2525