Intermediate HSS bracing members during seismic excitations: modeling, design, and behavior

被引:4
作者
Haddad, Madhar [1 ]
机构
[1] United Arab Emirates Univ, Dept Architectural Engn, POB 15551, Al Ain, U Arab Emirates
关键词
HSS; FEM; stress-strain curves; damage model; CONCENTRICALLY BRACED FRAMES; STEEL BRACES; CONNECTIONS;
D O I
10.1007/s11709-016-0375-5
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Concentric hollow structural section (HSS) bracing members are used frequently in steel framed structural systems to resist seismic excitations. Finite element modeling of the HSS braces that utilizes the true stress-strain curves produces hysteresis responses that are reasonable matches to the experimental response. True stress-strain curves are obtained from coupon tests or stub-column tests while utilizing an exponential function or strain hardening rule with a trial and error procedure to obtain the hysteresis behavior. In the current study, the true stress-strain curves are directly obtained from tests on stub-columns extracted from the full scale HSS bracing members away from the mid-length plastic hinge after cyclic testing. Two experimental tests (Shaback 2001 and Haddad 2004) were used to validate the model. Results indicate that the stress-strain curves for these braces are not unique. A refined damage accumulation model for ultra-low-cycle fatigue is implemented to predict fracture of the brace tests. The refined damage model is then used in the finite element modeling to predict fracture of braces in a chevron braced frame of an eight-storey building subjected to selected ground motions analyzed using OpenSees program. Results indicate that all braces could sustain the selected earthquake records without fracture.
引用
收藏
页码:148 / 162
页数:15
相关论文
共 40 条
[1]  
Aguero A., 2006, ADV STEEL CONSTR, V2, P242
[2]  
AISC, 2015, Seismic provisions for structural steel buildings
[3]  
AISC, 2010, SEISM PROV STRUCT ST
[4]  
American Institute of Steel Construction (AISC), 2010, SPEC STRUCT STEEL DE
[5]  
[Anonymous], 2005, Seismic Provisions for Structural Steel Buildings
[6]  
[Anonymous], 2011, ABAQUS US MAN
[7]  
[Anonymous], A500 ASTM
[8]  
[Anonymous], 2009, CSAS1609
[9]   CYCLIC OUT-OF-PLANE BUCKLING OF DOUBLE-ANGLE BRACING [J].
ASTANEHASL, A ;
GOEL, SC ;
HANSON, RD .
JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1985, 111 (05) :1135-1153
[10]  
CEB, 2005, 1993112005E CEB EN