On the dimension of p-harmonic measure in space

被引:8
|
作者
Lewis, John L. [1 ]
Nystrom, Kaj [2 ]
Vogel, Andrew [3 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[3] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
p-harmonic function; p-harmonic measure; Hausdorff dimension; Reifenberg flat domain; Wolff snowflake; BOUNDARY-BEHAVIOR; HAUSDORFF DIMENSION; LIPSCHITZ; REGULARITY; SETS;
D O I
10.4171/JEMS/420
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-n, n >= 3, and let p, 1 < p < infinity, p not equal D 2, be given. In this paper we study the dimension of p-harmonic measures that arise from nonnegative solutions to the p-Laplace equation, vanishing on a portion of partial derivative Omega, in the setting of delta-Reifenberg flat domains. We prove, for p >= n, that there exists (delta) over tilde = (delta) over tilde (p, n) > 0 small such that if Omega is a delta-Reifenberg flat domain with delta < <(delta)over tilde>, then p-harmonic measure is concentrated on a set of sigma-finite Hn-1-measure. We prove, for p >= n, that for sufficiently flat Wolff snowflakes the Hausdorff dimension of p-harmonic measure is always less than n - 1. We also prove that if 2 < p < n, then there exist Wolff snowflakes such that the Hausdorff dimension of p-harmonic measure is less than n - 1, while if 1 < p < 2, then there exist Wolff snowflakes such that the Hausdorff dimension of p-harmonic measure is larger than n - 1. Furthermore, perturbing off the case p = 2; we derive estimates for the Hausdorff dimension of p-harmonic measure when p is near 2.
引用
收藏
页码:2197 / 2256
页数:60
相关论文
共 50 条
  • [1] On the dimension of p-harmonic measure
    Bennewitz, B
    Lewis, JL
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2005, 30 (02) : 459 - 505
  • [2] Note on p-Harmonic Measure
    John L. Lewis
    Computational Methods and Function Theory, 2006, 6 (1) : 109 - 144
  • [3] DECAY OF A p-HARMONIC MEASURE IN THE PLANE
    Lundstrom, Niklas L. P.
    Vasilis, Jonatan
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (01) : 351 - 366
  • [4] THE p-HARMONIC MEASURE OF A SMALL SPHERICAL CAP
    Deblassie, Dante
    Smits, Robert G.
    MATEMATICHE, 2016, 71 (01): : 149 - 171
  • [5] p-harmonic measure is not additive on null sets
    Llorente, JG
    Manfredi, JJ
    Wu, JM
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2005, 4 (02) : 357 - 373
  • [6] Logarithmic Holder Estimates of p-Harmonic Extension Operators in a Metric Measure Space
    Itoh, Tsubasa
    COMPLEX ANALYSIS AND POTENTIAL THEORY, 2012, 55 : 163 - 169
  • [7] The Behavior at Infinity of p-Harmonic Measure in an Infinite Slab
    DeBlassie, Dante
    Smits, Robert G.
    MICHIGAN MATHEMATICAL JOURNAL, 2021, 70 (03) : 561 - 585
  • [8] A regularity result for p-harmonic equations with measure data
    Carozza, Menita
    di Napoli, Antonia Passarelli
    COLLECTANEA MATHEMATICA, 2004, 55 (01) : 11 - 19
  • [9] ON the p-Harmonic Robin Radius in the Euclidean Space
    Kalmykov S.I.
    Prilepkina E.G.
    Journal of Mathematical Sciences, 2017, 225 (6) : 969 - 979
  • [10] The p-harmonic approximation and the regularity of p-harmonic maps
    Frank Duzaar
    Giuseppe Mingione
    Calculus of Variations and Partial Differential Equations, 2004, 20 : 235 - 256