On the dimension of p-harmonic measure in space

被引:9
作者
Lewis, John L. [1 ]
Nystrom, Kaj [2 ]
Vogel, Andrew [3 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[3] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
p-harmonic function; p-harmonic measure; Hausdorff dimension; Reifenberg flat domain; Wolff snowflake; BOUNDARY-BEHAVIOR; HAUSDORFF DIMENSION; LIPSCHITZ; REGULARITY; SETS;
D O I
10.4171/JEMS/420
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-n, n >= 3, and let p, 1 < p < infinity, p not equal D 2, be given. In this paper we study the dimension of p-harmonic measures that arise from nonnegative solutions to the p-Laplace equation, vanishing on a portion of partial derivative Omega, in the setting of delta-Reifenberg flat domains. We prove, for p >= n, that there exists (delta) over tilde = (delta) over tilde (p, n) > 0 small such that if Omega is a delta-Reifenberg flat domain with delta < <(delta)over tilde>, then p-harmonic measure is concentrated on a set of sigma-finite Hn-1-measure. We prove, for p >= n, that for sufficiently flat Wolff snowflakes the Hausdorff dimension of p-harmonic measure is always less than n - 1. We also prove that if 2 < p < n, then there exist Wolff snowflakes such that the Hausdorff dimension of p-harmonic measure is less than n - 1, while if 1 < p < 2, then there exist Wolff snowflakes such that the Hausdorff dimension of p-harmonic measure is larger than n - 1. Furthermore, perturbing off the case p = 2; we derive estimates for the Hausdorff dimension of p-harmonic measure when p is near 2.
引用
收藏
页码:2197 / 2256
页数:60
相关论文
共 36 条
[1]  
[Anonymous], 1995, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ
[2]  
Batakis A, 1996, ANN ACAD SCI FENN-M, V21, P255
[3]  
Bennewitz B, 2005, ANN ACAD SCI FENN-M, V30, P459
[4]   ON THE HAUSDORFF DIMENSION OF HARMONIC MEASURE IN HIGHER DIMENSION [J].
BOURGAIN, J .
INVENTIONES MATHEMATICAE, 1987, 87 (03) :477-483
[5]  
Capogna L., 2005, U LECT SER, V35
[6]   ON THE SUPPORT OF HARMONIC MEASURE FOR SETS OF CANTOR TYPE [J].
CARLESON, L .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01) :113-123
[7]  
Dahlberg B. E. J., 1977, Archive for Rational Mechanics and Analysis, V65, P275, DOI 10.1007/BF00280445
[8]   AREA INTEGRAL ESTIMATES FOR ELLIPTIC DIFFERENTIAL-OPERATORS WITH NON-SMOOTH COEFFICIENTS [J].
DAHLBERG, BEJ ;
JERISON, DS ;
KENIG, CE .
ARKIV FOR MATEMATIK, 1984, 22 (01) :97-108
[9]   THE WIENER TEST FOR DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, E ;
JERISON, D ;
KENIG, C .
ANNALES DE L INSTITUT FOURIER, 1982, 32 (03) :151-182
[10]  
Fabes E.B., 1983, Wadsworth Math. Ser., VI, P577