The discrete Heisenberg group and its automorphism group

被引:9
|
作者
Osipov, D. V. [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
discrete Heisenberg group; automorphism group; structure theorem;
D O I
10.1134/S0001434615070160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we give a simpler and shorter proof of the claim, which is originally due to Kahn [ 1], that the automorphism group of the discrete Heisenberg group Heis(3, Z) is isomorphic to the group (Z. Z) similar to GL(2, Z). Our method for constructing this isomorphism provides a much clearer picture of the structure of the automorphism group of Heis(3, Z). Consider the discrete Heisenberg group G = Heis(3, Z), which is the group of matrices of the form where the entries a, b, and c are elements of the group Z. The group G can also be viewed as the set of all integer triples equipped with the group law where Inn(G) similar or equal to G/C similar or equal to Z. Z is the inner automorphism group and the homomorphism. is the homomorphism Aut(G). Aut(Z. Z) induced by the homomorphism. in the exact sequence (3). Clearly, Im(.). Ker(nu).
引用
收藏
页码:185 / 188
页数:4
相关论文
共 50 条
  • [1] The discrete Heisenberg group and its automorphism group
    D. V. Osipov
    Mathematical Notes, 2015, 98 : 185 - 188
  • [2] The noncommutative geometry of the discrete Heisenberg group
    Hadfield, T
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (02): : 453 - 481
  • [3] A Wiener Lemma for the discrete Heisenberg group
    Goll, Martin
    Schmidt, Klaus
    Verbitskiy, Evgeny
    MONATSHEFTE FUR MATHEMATIK, 2016, 180 (03): : 485 - 525
  • [4] The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra
    Shen, Ran
    Jiang, Cuipo
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (07) : 2547 - 2558
  • [5] ON THE CENTRE OF THE AUTOMORPHISM GROUP OF A GROUP
    Farrokhi, M. D. G.
    Moghaddam, Mohammad Reza R.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (03) : 390 - 396
  • [6] ON DETERMINABILITY OF A COMPLETELY DECOMPOSABLE RANK 2 GROUP BY ITS AUTOMORPHISM GROUP
    Vildanov, V. K.
    Gaidak, V. A.
    Timoshenko, E. A.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2020, (68): : 23 - 32
  • [7] Determinability of a completely decomposable rank 3 group by its automorphism group
    Timoshenko, Egor A.
    Tretyakov, Ivan, V
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2022, (76): : 32 - 42
  • [8] A characterization of the bidisc by a subgroup of its automorphism group
    Biswas, Anindya
    Maitra, Anwoy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (02)
  • [9] Spectral estimations for the Laplace operator on the discrete Heisenberg group
    Kokhas K.
    Suvorov A.
    Journal of Mathematical Sciences, 2001, 107 (5) : 4237 - 4247
  • [10] The automorphism group of the alternating group graph
    Zhou, Jin-Xin
    APPLIED MATHEMATICS LETTERS, 2011, 24 (02) : 229 - 231