Phase synchronization of chaotic oscillators

被引:2308
|
作者
Rosenblum, MG
Pikovsky, AS
Kurths, J
机构
[1] UNIV POTSDAM, MAX PLANCK ARBEITSGRP NICHTLINEARE DYNAM, NEUEN PALAIS 19, D-14415 POTSDAM, GERMANY
[2] RUSSIAN ACAD SCI, MECH ENG RES INST, MOSCOW, RUSSIA
关键词
D O I
10.1103/PhysRevLett.76.1804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the new effect of phase synchronization of weakly coupled self-sustained chaotic oscillators. To characterize this phenomenon, we use the analytic signal approach based on the Hilbert transform and partial Poincare maps. For coupled Rossler attractors, in the synchronous regime the phases are locked, while the amplitudes vary chaotically and are practically uncorrelated. Coupling a chaotic oscillator with a hyperchaotic one, we observe another new type of synchronization, where the frequencies are entrained, while the phase difference is unbounded. A relation between the phase synchronization and the properties of the Lyapunov spectrum is studied.
引用
收藏
页码:1804 / 1807
页数:4
相关论文
共 50 条
  • [31] Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization
    Hramov, Alexander E.
    Koronovskii, Alexey A.
    Kurovskaya, Maria K.
    Boccaletti, S.
    PHYSICAL REVIEW LETTERS, 2006, 97 (11)
  • [32] Generalized synchronization of chaotic oscillators
    A. A. Koronovskiĭ
    O. I. Moskalenko
    A. E. Hramov
    Technical Physics Letters, 2006, 32 : 113 - 116
  • [33] Generalized synchronization of chaotic oscillators
    Koronovskii, A. A.
    Moskalenko, O. I.
    Hramov, A. E.
    TECHNICAL PHYSICS LETTERS, 2006, 32 (02) : 113 - 116
  • [34] Synchronization of chaotic neuronal oscillators
    Chen, H
    Gong, XF
    Li, FL
    CHAOS SOLITONS & FRACTALS, 1998, 9 (09) : 1567 - 1574
  • [35] Breakdown of synchronization in chaotic oscillators and noisy oscillators
    Imabayashi, Ryo
    Uwate, Yoko
    Nishio, Yoshifumni
    2007 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN, VOLS 1-3, 2007, : 922 - 925
  • [36] Phase and LAG synchronization in coupled fractional order chaotic oscillators
    Li, Chunguang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (30): : 5159 - 5166
  • [37] Phase synchronization with type-II intermittency in chaotic oscillators
    Kim, I
    Kim, CM
    Kye, WH
    Park, YJ
    PHYSICAL REVIEW E, 2000, 62 (06): : 8826 - 8829
  • [38] Phase synchronization of regular and chaotic self-sustained oscillators
    Pikovsky, AS
    Rosenblum, MG
    SYNCHRONIZATION: THEORY AND APPLICATION, 2003, 109 : 187 - 219
  • [39] On the synchronization of different chaotic oscillators
    Xiaofeng, G
    Lai, CH
    CHAOS SOLITONS & FRACTALS, 2000, 11 (08) : 1231 - 1235
  • [40] On phase synchronization by periodic force in chaotic oscillators with saddle equilibria
    Zaks, MA
    Park, EH
    Kurths, J
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (11): : 2649 - 2667