Mean and almost everywhere convergence of Fourier-Neumann series

被引:13
作者
Ciaurri, O
Guadalupe, JJ
Pérez, M
Varona, JL
机构
[1] Univ La Rioja, Dept Matemat & Computac, Logrono 26004, Spain
[2] Univ Zaragoza, Dept Matemat, Zaragoza 50009, Spain
关键词
Bessel functions; Fourier series; Neumann series; mean convergence; almost everywhere convergence; Hankel transform;
D O I
10.1006/jmaa.1999.6442
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let J(mu) denote the Bessel function of order mu. The functions x(-alpha/2-beta/2-1/2)J(alpha+beta+2n+1)(x(1/2)), n = 0, 1,2,..., form an orthogonal system in L-2((0, infinity), x(alpha+beta)dx) when alpha + beta > -1. In this paper we analyze the range of p, alpha, and beta for which the Fourier series with respect to this system converges in the L-p((0, infinity), x(alpha) dx)-norm. Also, we describe the space in which the span of the system is dense and we show some of its properties. Finally, we study the almost everywhere convergence of the Fourier series for functions in such spaces. (C) 1999 Academic Press.
引用
收藏
页码:125 / 147
页数:23
相关论文
共 15 条
[1]  
[Anonymous], 1975, AM MATH SOC C PUBLIC
[2]  
[Anonymous], 1944, TREATISE THEORY BESS
[3]   BAND-LIMITED FUNCTIONS - LP-CONVERGENCE [J].
BARCELO, JA ;
CORDOBA, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 313 (02) :655-669
[4]   THE DISK MULTIPLIER [J].
CORDOBA, A .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (01) :21-29
[5]   ON HANKEL TRANSFORM [J].
DURAN, AJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (02) :417-424
[6]  
Erdelyi A., 1954, TABLES INTEGRAL TRAN, VII
[7]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[8]  
Garcia-Cuerva J., 1985, MATH STUDIES, V116
[10]  
MENDEZ JM, 1991, J MATH ANAL APPL, V154, P543