Stochastic Heisenberg Limit: Optimal Estimation of a Fluctuating Phase

被引:30
作者
Berry, Dominic W. [1 ]
Hall, Michael J. W. [2 ]
Wiseman, Howard M. [2 ]
机构
[1] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia
[2] Griffith Univ, Ctr Quantum Computat & Commun Technol, Australian Res Council, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
关键词
D O I
10.1103/PhysRevLett.111.113601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ultimate limits to estimating a fluctuating phase imposed on an optical beam can be found using the recently derived continuous quantum Cramer-Rao bound. For Gaussian stationary statistics, and a phase spectrum scaling asymptotically as omega(-p) with p > 1, the minimum mean-square error in any (single-time) phase estimate scales as N-2(p-1)/(p+1), where N is the photon flux. This gives the usual Heisenberg limit for a constant phase (as the limit p -> infinity) and provides a stochastic Heisenberg limit for fluctuating phases. For p = 2 (Brownian motion), this limit can be attained by phase tracking.
引用
收藏
页数:5
相关论文
共 15 条
[1]   Adaptive phase measurements for narrowband squeezed beams (vol 73, 063824, 2006) [J].
Berry, Dominic W. ;
Wiseman, Howard M. .
PHYSICAL REVIEW A, 2013, 87 (01)
[2]   Adaptive phase measurements for narrowband squeezed beams [J].
Berry, Dominic W. ;
Wiseman, Howard M. .
PHYSICAL REVIEW A, 2006, 73 (06)
[3]   Adaptive quantum measurements of a continuously varying phase [J].
Berry, DW ;
Wiseman, HM .
PHYSICAL REVIEW A, 2002, 65 (04) :438031-438034
[4]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[5]   Heisenberg-limited sensitivity with decoherence-enhanced measurements [J].
Braun, Daniel ;
Martin, John .
NATURE COMMUNICATIONS, 2011, 2
[6]  
Hall M. J. W., ARXIVHEPTH0206235
[7]   INTERFEROMETRIC DETECTION OF OPTICAL-PHASE SHIFTS AT THE HEISENBERG LIMIT [J].
HOLLAND, MJ ;
BURNETT, K .
PHYSICAL REVIEW LETTERS, 1993, 71 (09) :1355-1358
[8]  
Iwasawa K., ARXIV13050066
[9]   Quantum metrology with open dynamical systems [J].
Tsang, Mankei .
NEW JOURNAL OF PHYSICS, 2013, 15
[10]   Fundamental Quantum Limit to Waveform Estimation [J].
Tsang, Mankei ;
Wiseman, Howard M. ;
Caves, Carlton M. .
PHYSICAL REVIEW LETTERS, 2011, 106 (09)