Stochastic Heisenberg Limit: Optimal Estimation of a Fluctuating Phase

被引:31
作者
Berry, Dominic W. [1 ]
Hall, Michael J. W. [2 ]
Wiseman, Howard M. [2 ]
机构
[1] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia
[2] Griffith Univ, Ctr Quantum Computat & Commun Technol, Australian Res Council, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
关键词
D O I
10.1103/PhysRevLett.111.113601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ultimate limits to estimating a fluctuating phase imposed on an optical beam can be found using the recently derived continuous quantum Cramer-Rao bound. For Gaussian stationary statistics, and a phase spectrum scaling asymptotically as omega(-p) with p > 1, the minimum mean-square error in any (single-time) phase estimate scales as N-2(p-1)/(p+1), where N is the photon flux. This gives the usual Heisenberg limit for a constant phase (as the limit p -> infinity) and provides a stochastic Heisenberg limit for fluctuating phases. For p = 2 (Brownian motion), this limit can be attained by phase tracking.
引用
收藏
页数:5
相关论文
共 15 条
  • [1] Adaptive phase measurements for narrowband squeezed beams (vol 73, 063824, 2006)
    Berry, Dominic W.
    Wiseman, Howard M.
    [J]. PHYSICAL REVIEW A, 2013, 87 (01):
  • [2] Adaptive phase measurements for narrowband squeezed beams
    Berry, Dominic W.
    Wiseman, Howard M.
    [J]. PHYSICAL REVIEW A, 2006, 73 (06):
  • [3] Adaptive quantum measurements of a continuously varying phase
    Berry, DW
    Wiseman, HM
    [J]. PHYSICAL REVIEW A, 2002, 65 (04): : 438031 - 438034
  • [4] Bhatia R, 2007, PRINC SER APPL MATH, P1
  • [5] Heisenberg-limited sensitivity with decoherence-enhanced measurements
    Braun, Daniel
    Martin, John
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [6] Hall M. J. W., ARXIVHEPTH0206235
  • [7] INTERFEROMETRIC DETECTION OF OPTICAL-PHASE SHIFTS AT THE HEISENBERG LIMIT
    HOLLAND, MJ
    BURNETT, K
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (09) : 1355 - 1358
  • [8] Iwasawa K., ARXIV13050066
  • [9] Quantum metrology with open dynamical systems
    Tsang, Mankei
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [10] Fundamental Quantum Limit to Waveform Estimation
    Tsang, Mankei
    Wiseman, Howard M.
    Caves, Carlton M.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (09)