3D Action Recognition Exploiting Hierarchical Deep Feature Fusion Model

被引:0
作者
Thien Huynh-The [1 ]
Hua, Cam-Hao [2 ]
Nguyen Anh Tu [3 ]
Kim, Jae-Woo [1 ]
Kim, Seung-Hwan [1 ]
Kim, Dong-Seong [1 ]
机构
[1] Kumoh Natl Inst Technol, Gumi Si, South Korea
[2] Kyung Hee Univ, Gwangju Si, South Korea
[3] Nazarbayev Univ, Nur Sultan, Kazakhstan
来源
PROCEEDINGS OF THE 2020 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM) | 2020年
基金
新加坡国家研究基金会;
关键词
Human action recognition; geometric feature; deep feature fusion; convolutional neural network;
D O I
10.1109/imcom48794.2020.9001766
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Numerous existing handcrafted feature-based and conventional machine learning-based approaches cannot seize the intensive correlations of skeleton structure in the spatiotemporal dimension. On another hand, some modern methods exploiting Long Short Term Memory (LSTM) to learn temporal action attribute, which lack an efficient scheme of revealing high-level informative features. To handle the aforementioned issues, this research introduces a novel hierarchical deep feature fusion model for 3D skeleton-based human action recognition, in which the deep information for modeling human appearance and action dynamic is gained by Convolutional Neural Networks (CNNs). The deep features of geometrical joint distance and orientation are extracted via a multi-stream CNN architecture to uncovering the hidden correlations in both the spatial and temporal dimensions. The experimental results on the NTU RGB+D dataset demonstrates the superiority of the proposed fusion model against several recently deep learning (DL)-based action recognition approaches.
引用
收藏
页数:3
相关论文
共 16 条
[1]  
Banos O, 2015, IEEE ENG MED BIO, P5062, DOI 10.1109/EMBC.2015.7319529
[2]   Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification [J].
Hua, Cam-Hao ;
Thien Huynh-The ;
Kim, Kiyoung ;
Yu, Seung-Young ;
Thuong Le-Tien ;
Park, Gwang Hoon ;
Bang, Jaehun ;
Khan, Wajahat Ali ;
Bae, Sung-Ho ;
Lee, Sungyoung .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2019, 132
[3]   Convolutional Networks with Bracket-style Decoder for Semantic Scene Segmentation [J].
Hua, Cam-Hao ;
Thien Huynh-The ;
Lee, Sungyoung .
2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, :2980-2985
[4]   Encoding Pose Features to Images With Data Augmentation for 3-D Action Recognition [J].
Huynh-The, Thien ;
Hua, Cam-Hao ;
Kim, Dong-Seong .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (05) :3100-3111
[5]   Learning Clip Representations for Skeleton-Based 3D Action Recognition [J].
Ke, Qiuhong ;
Bennamoun, Mohammed ;
An, Senjian ;
Sohel, Ferdous ;
Boussaid, Farid .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) :2842-2855
[6]  
Le-Tien T., 2016, PROC 10 INT C UBIQUI, P1
[7]  
Li CZ, 2017, ADV SOC SCI EDUC HUM, V142, P609
[8]   ML-HDP: A Hierarchical Bayesian Nonparametric Model for Recognizing Human Actions in Video [J].
Nguyen Anh Tu ;
Thien Huynh-The ;
Khan, Kifayat Ullah ;
Lee, Young-Koo .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (03) :800-814
[9]   NTU RGB plus D: A Large Scale Dataset for 3D Human Activity Analysis [J].
Shahroudy, Amir ;
Liu, Jun ;
Ng, Tian-Tsong ;
Wang, Gang .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1010-1019
[10]   Hierarchical topic modeling with pose-transition feature for action recognition using 3D skeleton data [J].
Thien Huynh-The ;
Hua, Cam-Hao ;
Nguyen Anh Tu ;
Hur, Taeho ;
Bang, Jaehun ;
Kim, Dohyeong ;
Amin, Muhammad Bilal ;
Kang, Byeong Ho ;
Seung, Hyonwoo ;
Shin, Soo Yong ;
Kim, Eun-Soo ;
Lee, Sungyoung .
INFORMATION SCIENCES, 2018, 444 :20-35