Plasticity of 150-Loop in Influenza Neuraminidase Explored by Hamiltonian Replica Exchange Molecular Dynamics Simulations

被引:25
作者
Han, Nanyu [1 ]
Mu, Yuguang [1 ]
机构
[1] Nanyang Technol Univ, Sch Biol Sci, Singapore 639798, Singapore
关键词
RATIONAL DESIGN; POTENT; INHIBITORS; EVOLUTION; DISCOVERY; PROTEINS;
D O I
10.1371/journal.pone.0060995
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design [J].
Amaro, Rommie E. ;
Minh, David D. L. ;
Cheng, Lily S. ;
Lindstrom, William M., Jr. ;
Olson, Arthur J. ;
Lin, Jung-Hsin ;
Li, Wilfred W. ;
McCammon, J. Andrew .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (25) :7764-+
[2]   Mechanism of 150-cavity formation in influenza neuraminidase [J].
Amaro, Rommie E. ;
Swift, Robert V. ;
Votapka, Lane ;
Li, Wilfred W. ;
Walker, Ross C. ;
Bush, Robin M. .
NATURE COMMUNICATIONS, 2011, 2
[3]   Characterizing Loop Dynamics and Ligand Recognition in Human- and Avian-Type Influenza Neuraminidases via Generalized Born Molecular Dynamics and End-Point Free Energy Calculations [J].
Amaro, Rommie E. ;
Cheng, Xiaolin ;
Ivanov, Ivaylo ;
Xu, Dong ;
McCammon, J. Andrew .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (13) :4702-4709
[4]   The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling [J].
Arnold, K ;
Bordoli, L ;
Kopp, J ;
Schwede, T .
BIOINFORMATICS, 2006, 22 (02) :195-201
[5]   BCX-1812 (RWJ-270201): Discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design [J].
Babu, YS ;
Chand, P ;
Bantia, S ;
Kotian, P ;
Dehghani, A ;
El-Kattan, Y ;
Lin, TH ;
Hutchison, TL ;
Elliott, AJ ;
Parker, CD ;
Ananth, SL ;
Horn, LL ;
Laver, GW ;
Montgomery, JA .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (19) :3482-3486
[6]   PROTEINS MOVE! PROTEIN DYNAMICS AND LONG-RANGE ALLOSTERY IN CELL SIGNALING [J].
Bu, Zimei ;
Callaway, David J. E. .
ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY: PROTEIN STRUCTURE AND DISEASES, VOL 83, 2011, 83 :163-221
[7]   Origins of resistance conferred by the R292K neuraminidase mutation via molecular dynamics and free energy calculations [J].
Chachra, Ricky ;
Rizzo, Robert C. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (09) :1526-1540
[8]   Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase [J].
Cheng, Lily S. ;
Amaro, Romanic E. ;
Xu, Dong ;
Li, Wilfred W. ;
Arzberger, Peter W. ;
McCammon, J. Andrew .
JOURNAL OF MEDICINAL CHEMISTRY, 2008, 51 (13) :3878-3894
[9]   The GROMOS software for biomolecular simulation:: GROMOS05 [J].
Christen, M ;
Hünenberger, PH ;
Bakowies, D ;
Baron, R ;
Bürgi, R ;
Geerke, DP ;
Heinz, TN ;
Kastenholz, MA ;
Kräutler, V ;
Oostenbrink, C ;
Peter, C ;
Trzesniak, D ;
Van Gunsteren, WF .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1719-1751
[10]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092