One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors

被引:38
作者
Chiu, Cheng-Ting [1 ]
Chen, Dong-Hwang [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan
关键词
Ni-Co sulfide; reduced graphene oxide; carbon nanotubes; one-step hydrothermal synthesis; 3D porous supercapacitor electrode; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; NANOSPHERES; FABRICATION; NETWORKS; DESIGN; ARRAYS; FOAM; FILM;
D O I
10.1088/1361-6528/aaaff5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three-dimensional (3D) porous Ni-Co sulfide/reduced graphene oxide composite with the appropriate incorporation of carbon nanotubes (NCS/rGO/CNT) was fabricated as a promising material for supercapacitor electrodes. It combined the high pseudo-capacitance of Ni-Co sulfide as well as the large specific surface area and electrical double layer capacitance of reduced graphene oxide (rGO). Carbon nanotubes (CNTs) were incorporated to act as the spacer for hindering the restacking of rGO and to construct a conductive network for enhancing the electron transport. The 3D porous NCS/rGO/CNT composite was fabricated by a facile one-step hydrothermal process in which Ni-Co sulfide nanosheets were synthesized and graphene oxide was reduced simultaneously. It was shown that the capacitance and cyclic performance indeed could be effectively improved via the appropriate addition of CNTs. In addition, a flexible all-solid-state asymmetric supercapacitor based on the NCS/rGO/CNT electrode was fabricated and exhibited the same capacitive electrochemical performance under bending. Also, it could successfully turn on a light-emitting diode light, revealing its feasibility in practical application. All results demonstrated that the developed NCS/rGO/CNT composite has potential application in supercapacitors.
引用
收藏
页数:12
相关论文
共 38 条
[1]   Comparison of the Electrochemical Performance of NiMoO4 Nanorods and Hierarchical Nanospheres for Supercapacitor Applications [J].
Cai, Daoping ;
Wang, Dandan ;
Liu, Bin ;
Wang, Yanrong ;
Liu, Yuan ;
Wang, Lingling ;
Li, Han ;
Huang, Hui ;
Li, Qiuhong ;
Wang, Taihong .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (24) :12905-12910
[2]   Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors [J].
Cai, Guofa ;
Darmawan, Peter ;
Cui, Mengqi ;
Wang, Jiangxin ;
Chen, Jingwei ;
Magdassi, Shlomo ;
Lee, Pooi See .
ADVANCED ENERGY MATERIALS, 2016, 6 (04)
[3]   Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors [J].
Chen, Haichao ;
Jiang, Jianjun ;
Zhang, Li ;
Wan, Houzhao ;
Qi, Tong ;
Xia, Dandan .
NANOSCALE, 2013, 5 (19) :8879-8883
[4]   Hierarchically porous graphene-based hybrid electrodes with excellent electrochemical performance [J].
Chen, Sheng ;
Duan, Jingjing ;
Jaroniec, Mietek ;
Qiao, Shi Zhang .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (33) :9409-9413
[5]   High-performance free-standing PEDOT: PSS electrodes for flexible and transparent all-solid-state supercapacitors [J].
Cheng, Tao ;
Zhang, Yi-Zhou ;
Zhang, Jian-Dong ;
Lai, Wen-Yong ;
Huang, Wei .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (27) :10493-10499
[6]   Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor [J].
Cui, Xiaoyang ;
Lv, Ruitao ;
Sagar, Rizwan Ur Rehman ;
Liu, Can ;
Zhang, Zhengjun .
ELECTROCHIMICA ACTA, 2015, 169 :342-350
[7]   Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors [J].
Deng, Yuanfu ;
Xie, Ye ;
Zou, Kaixiang ;
Ji, Xiulei .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (04) :1144-1173
[8]   Needle-like Co3O4 Anchored on the Graphene with Enhanced Electrochemical Performance for Aqueous Supercapacitors [J].
Guan, Qun ;
Cheng, Jianli ;
Wang, Bin ;
Ni, Wei ;
Gu, Guifang ;
Li, Xiaodong ;
Huang, Ling ;
Yang, Guangcheng ;
Nie, Fude .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) :7626-7632
[9]   Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultra light and Flexible Supercapacitor Electrodes [J].
He, Yongmin ;
Chen, Wanjun ;
Li, Xiaodong ;
Zhang, Zhenxing ;
Fu, Jiecai ;
Zhao, Changhui ;
Xie, Erqing .
ACS NANO, 2013, 7 (01) :174-182
[10]   Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity [J].
Hsu, Kai-Chih ;
Chen, Dong-Hwang .
NANOSCALE RESEARCH LETTERS, 2014, 9 :1-9