Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine

被引:231
|
作者
Wu, Shuen-De [2 ]
Wu, Po-Hung [1 ]
Wu, Chiu-Wen [2 ]
Ding, Jian-Jiun [1 ]
Wang, Chun-Chieh [3 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Mechatron Technol, Taipei 10610, Taiwan
[3] Ind Technol Res Inst, Mech & Syst Res Labs, Hsinchu 31040, Taiwan
关键词
fault diagnosis; machine vibration; multiscale; permutation entropy; multiscale permutation entropy; support vector machine; APPROXIMATE ENTROPY; COMPLEXITY; TOOL;
D O I
10.3390/e14081343
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, multiscale permutation entropy (MPE) was introduced for feature extraction from faulty bearing vibration signals. After extracting feature vectors by MPE, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. Simulation results demonstrated that the proposed method is a very powerful algorithm for bearing fault diagnosis and has much better performance than the methods based on single scale permutation entropy (PE) and multiscale entropy (MSE).
引用
收藏
页码:1343 / 1356
页数:14
相关论文
共 50 条
  • [41] Bearing Fault Diagnosis based on Independent Component Analysis and Optimized Support Vector Machine
    Thelaidjia, Tawfik
    Moussaoui, Abdelkrim
    Chenikher, Salah
    2015 7TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2014, : 160 - 163
  • [42] Composite multi-scale weighted permutation entropy and extreme learning machine based intelligent fault diagnosis for rolling bearing
    Zheng, Jinde
    Dong, Zhilin
    Pan, Haiyang
    Ni, Qing
    Liu, Tao
    Zhang, Jun
    MEASUREMENT, 2019, 143 : 69 - 80
  • [43] Fault Diagnosis of Rolling Bearing Based on Multiscale Intrinsic Mode Function Permutation Entropy and a Stacked Sparse Denoising Autoencoder
    Dai, Juying
    Tang, Jian
    Shao, Faming
    Huang, Shuzhan
    Wang, Yangyang
    APPLIED SCIENCES-BASEL, 2019, 9 (13):
  • [44] Fault Diagnosis of Rolling Bearing Based on Wavelet Packet Transform and Support Vector Machine
    Yang Zhengyou
    Peng Tao
    Li Jianbao
    Yang Huibin
    Jiang Haiyan
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 650 - 653
  • [45] Rolling Bearing Fault Diagnosis Based on Smoothness Priors Approach and Permutation Entropy
    Dai H.-D.
    Chen Q.-Q.
    Dai S.-W.
    Zhu M.
    Dai, Hong-De (13181612901@163.com), 1841, Journal of Propulsion Technology (41): : 1841 - 1849
  • [46] Transformer Fault Diagnosis Based on Support Vector Machine
    Zhang, Yan
    Zhang, Bide
    Yuan, Yuchun
    Pei, Zichun
    Wang, Yan
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 6, 2010, : 405 - 408
  • [47] Intelligent fault diagnosis based on support vector machine
    Xia Fangfang
    Yuan Long
    Zhao Xiucai
    He Wenan
    Jia Ruisheng
    PROCEEDINGS OF 2015 IEEE 12TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), VOL. 1, 2015, : 201 - 205
  • [48] A rolling bearing fault diagnosis method based on VMD - multiscale fractal dimension/energy and optimized support vector machine
    Chen, Fei
    Chen, Xiaojuan
    Yang, Zhaojun
    Xu, Binbin
    Xie, Qunya
    Zhang, Heng
    Ye, Yifeng
    JOURNAL OF VIBROENGINEERING, 2016, 18 (06) : 3581 - 3595
  • [49] Fault diagnosis based on support vector machine ensemble
    Li, Y
    Cai, YZ
    Yin, RP
    Xu, XM
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 3309 - 3314
  • [50] Roller Bearing Fault Diagnosis Method Based on Chemical Reaction Optimization and Support Vector Machine
    HungLinh Ao
    Cheng, Junsheng
    Zheng, Jinde
    Tung Khac Truong
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2015, 29 (05)