Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine

被引:231
|
作者
Wu, Shuen-De [2 ]
Wu, Po-Hung [1 ]
Wu, Chiu-Wen [2 ]
Ding, Jian-Jiun [1 ]
Wang, Chun-Chieh [3 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Mechatron Technol, Taipei 10610, Taiwan
[3] Ind Technol Res Inst, Mech & Syst Res Labs, Hsinchu 31040, Taiwan
关键词
fault diagnosis; machine vibration; multiscale; permutation entropy; multiscale permutation entropy; support vector machine; APPROXIMATE ENTROPY; COMPLEXITY; TOOL;
D O I
10.3390/e14081343
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, multiscale permutation entropy (MPE) was introduced for feature extraction from faulty bearing vibration signals. After extracting feature vectors by MPE, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. Simulation results demonstrated that the proposed method is a very powerful algorithm for bearing fault diagnosis and has much better performance than the methods based on single scale permutation entropy (PE) and multiscale entropy (MSE).
引用
收藏
页码:1343 / 1356
页数:14
相关论文
共 50 条
  • [21] Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network and Support Vector Machine
    Yuan, Laohu
    Lian, Dongshan
    Kang, Xue
    Chen, Yuanqiang
    Zhai, Kejia
    IEEE ACCESS, 2020, 8 : 137395 - 137406
  • [22] Fault diagnosis of rolling bearing using a refined composite multiscale weighted permutation entropy
    Yongjian Li
    Qiuming Gao
    Peng Li
    Jihua Liu
    Yingmou Zhu
    Journal of Mechanical Science and Technology, 2021, 35 : 1893 - 1907
  • [23] A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
    Zhang, Xiaoyuan
    Liang, Yitao
    Zhou, Jianzhong
    Zang, Yi
    MEASUREMENT, 2015, 69 : 164 - 179
  • [24] A rolling bearing fault diagnosis strategy based on improved multiscale permutation entropy and least squares SVM
    Yongjian Li
    Weihua Zhang
    Qing Xiong
    Dabing Luo
    Guiming Mei
    Tao Zhang
    Journal of Mechanical Science and Technology, 2017, 31 : 2711 - 2722
  • [25] Fault Diagnosis of Bearing Based on Fuzzy Support Vector Machine
    Ma, Haodong
    Xiong, Yi
    Fang, Hongzheng
    Gu, Lichao
    2015 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM), 2015,
  • [26] Refined composite multiscale slope entropy and its application in rolling bearing fault diagnosis
    Wang, Junfeng
    Zheng, Jinde
    Pan, Haiyang
    Tong, Jinyu
    Liu, Qingyun
    ISA TRANSACTIONS, 2024, 152 : 371 - 384
  • [27] Bearing fault identification based on stacking modified composite multiscale dispersion entropy and optimised support vector machine
    Tan, Hongchuang
    Xie, Suchao
    Liu, Runda
    Ma, Wen
    MEASUREMENT, 2021, 186
  • [28] Application of the refined multiscale permutation entropy method to fault detection of rolling bearing
    Li, Yongjian
    Gao, Qiuming
    Miao, Bingrong
    Zhang, Weihua
    Liu, Jihua
    Zhu, Yingmou
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2021, 43 (05)
  • [29] Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
    Zheng, Jinde
    Pan, Haiyang
    Cheng, Junsheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 85 : 746 - 759
  • [30] Application of the refined multiscale permutation entropy method to fault detection of rolling bearing
    Yongjian Li
    Qiuming Gao
    Bingrong Miao
    Weihua Zhang
    Jihua Liu
    Yingmou Zhu
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43